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Computerized Radiographic Mass Detection—Part I:
Lesion Site Selection by Morphological Enhancement

and Contextual Segmentation
Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Chung B. Lo, and Matthew T. Freedman

Abstract—This paper presents a statistical model supported
approach for enhanced segmentation and extraction of suspicious
mass areas from mammographic images. With an appropriate
statistical description of various discriminate characteristics
of both true and false candidates from the localized areas, an
improved mass detection may be achieved in computer-assisted
diagnosis (CAD). In this study, one type of morphological oper-
ation is derived to enhance disease patterns of suspected masses
by cleaning up unrelated background clutters, and a model-based
image segmentation is performed to localize the suspected mass
areas using stochastic relaxation labeling scheme. We discuss the
importance of model selection when a finite generalized Gaussian
mixture is employed, and use the information theoretic criteria to
determine the optimal model structure and parameters. Examples
are presented to show the effectiveness of the proposed methods
on mass lesion enhancement and segmentation when applied to
mammographical images. Experimental results demonstrate that
the proposed method achieves a very satisfactory performance as
a preprocessing procedure for mass detection in CAD.

Index Terms—Finite mixture, image enhancement, image seg-
mentation, information criterion, morphological filtering, relax-
ation labeling.

I. INTRODUCTION

I N RECENT years, several computer-assisted diagnosis
(CAD) schemes for mass detection and classification

have been developed [1]–[13]. Though it may be difficult to
compare the relative performance of these methods, because
the reported performance strongly depends on the degree of
subtlety of masses in the selected database, accurate selection
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of suspected masses is considered a critical and first step due
to the variability of normal breast tissue and the lower contrast
and ill-defined margins of masses [3], [6], and since no subtle
masses should be missed before any further analysis.

A number of image processing techniques have been pro-
posed to perform suspicious mass site selection. Kobatakeet al.
[1] proposed using a iris filter to detect tumors as suspicious re-
gions with very weak contrast to their background. Sametiet al.
[7] used fuzzy sets to partition the mammographic image data.
Lau and Yinet al. independently proposed using bilateral-sub-
traction to determine possible mass locations [9], [13]. Some
other investigators proposed using pixel-based feature segmen-
tation of spiculated masses [4], [8]. Kegelmeyer has reported
promising results for detecting spiculated tumors based on local
edge characteristics and Laws texture features [8]. Karssemeijer
et al. [4] proposed to identify stellate distortions by using the
orientation map of line-like structures. Recently, Petricket al.
[6] proposed a two-stage adaptive density-weighted contrast en-
hancement filtering technique along with edge detection and
morphological feature classification for automatic segmentation
of potential masses. Kupinski and Giger [3] presented a radial
gradient index-based algorithm and a probabilistic algorithm for
seeded lesion segmentation.

Nevertheless, to our best knowledge, few work has been ded-
icated to improve the task of lesion site selection although it is
indeed a very crucial step in CAD. Especially, few studies have
used and justified model-based image processing techniques for
unsupervised lesion site selection [11]. Zwiggelaaret al.devel-
oped a statistical model to describe and detect the abnormal pat-
tern of linear structures of spiculated lesions [2]. In their work,
the probability density function of the observation vectors for
each class is assumed to be normal. we have experienced that
the “normal” distribution for each class is nor true. Liet al.pro-
posed using a Markov random field model to extract suspicious
masses for mass detection [11]. In their study, most of model
parameters were chosen empirically, and the mammogram was
segmented into three regions (background, fat, and parenchymal
or tumors).

Stochastic model-based image segmentation is a technique
for partitioning an image into distinctive meaningful regions
based on the statistical properties of both gray level and context
images. A good segmentation result would depend on suitable
model selection for a specific image modality [16], [17] where
model selection refers to the determination of both the number
of image regions and the local statistical distributions of each
region. Furthermore, a segmentation result would be improved
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Fig. 1. Major components in CAD.

with preenhanced pattern of interest being segmented. The only
assumption for suspected mass site selection is that suspected
mass areas should be brighter than the surrounding breast tissues
which is valid for most of the real cases. When some masses
lie either within an inhomogeneous pattern of fibroglandular
tissue or are partially or completely surrounded by fibroglan-
dular tissue, enhancement of mass-related signals is important.

Fig. 1 shows a general block diagram of CAD systems. This
paper focuses on “image processing” block, to just automati-
cally pick up all possible lesion sites. We aim on two essential
issues in the stochastic model-based image segmentation: en-
hancement and model selection. Based on the differential geo-
metric characteristics of masses against the background tissues,
we propose one type of morphological operation to enhance the
mass patterns on mammograms. Then we employ a finite gen-
eralized Gaussian mixture (FGGM) distribution to model the
histogram of the mammograms where the statistical properties
of the pixel images are largely unknown and are to be incor-
porated. We incorporate the EM algorithm with two informa-
tion theoretic criteria to determine the optimal number of image
regions and the kernel shape in the FGGM model. Finally, we
apply a contextual Bayesian relaxation labeling (CBRL) tech-
nique to perform the selection of suspected masses. The major
differences of our work from the previous work [1]–[6], [8]–[13]
are as follows.

1) We present a new algorithm of morphological filtering
for image enhancement in which the combined operations
are applied to the original gray tone image and the higher
sensitive lesion site selection of the enhanced images are
observed.

2) We justify and pilot test the FGGM distribution in mod-
eling mammographic pixel images together with a model
selection procedure based on the two information theo-
retic criteria. This allows an automatic identification of
both the number ( ) and kernel shape () of the distri-
butions of tissue types.

3) We develop a new algorithm (CBRL) for segmenting
mass areas where the comparable results are achieved
as those using Markov random field model-based
approaches while with much less computational com-
plexity.

The presentation of this paper is organized as follows. In Sec-
tion II, the proposed dual morphological operation enhancement
technique is described in detail. The theory and algorithm on

FGGM modeling, model selection, and parameter estimation
are presented in Section III. This is followed by a discussion
on the selection of suspicious masses using the CBRL approach.
Evaluation results are given and discussed in Section IV. Finally,
the paper is concluded by Section V.

II. M ORPHOLOGICALENHANCEMENT

One of the main difficulties in suspicious mass segmentation
is that mammographic masses are often overlapped with dense
breast tissues. Therefore, it is necessary to remove bright back-
ground caused by dense breast tissues while preserving the fea-
tures and patterns related to the masses. For this purpose, back-
ground correction is an important step for mass segmentation.
We propose a mass pattern-dependent background removal ap-
proach using morphological operations.

A. Morphological Filtering Theory

Morphological operations can be employed for many image
processing purposes, including edge detection, region segmen-
tation, and image enhancement. The beauty and simplicity of
mathematical morphology approach come from the fact that a
large class of filters can be represented as the combination of
two simple operations: erosion and dilation. Letdenote the
set of integers and denote a discrete image signal, where
the domain set is given by
and the range set by . A structuring element

is a subset in with a simple geometrical shape and size.
Denote as the symmetric set of and

as the translation of by , where .
The erosion and dilation can be expressed as
[19]

(1)

(2)

On the other hand, opening and closing are defined
as [19]

(3)

(4)

A gray value image can be viewed as a two-dimensional sur-
face in a three-dimensional space. Given an image, the opening
operation removes the objects, which have size smaller than the
structuring element, with positive intensity. Thus, with the spec-
ified structuring element, one can extract different image con-
texts by taking the difference between the original and opening
processed image, which is known as “tophat” operation [19].

B. Morphological Enhancement Algorithms

Based on the properties of morphological filters, we designed
one type of mass pattern-dependent enhancement approaches.
The algorithm is implemented by dual morphological tophat op-
erations following by a subtraction which is described as fol-
lows.
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Step 1) The textures without the pattern information of in-
terest are extracted by a tophat operation

(5)

where is the original image, and is
the residue image between the original image and the
opening of the original image by a specified struc-
turing element . The size of should be chosen
smaller than the size of masses.

Step 2) Let be the mass pattern enhanced image by
background correction, i.e., by the second tophat op-
eration on

(6)

where is a specified structuring element which
has a larger size than masses.

Step 3) The enhanced image can be derived as

(7)

This operation is called “dual morphological operation.” It
can remove the background noise and the structure noise inside
the suspected mass patterns. Fig. 2 shows the mass patch and
the enhanced results of each step using the dual morphological
operation. As we can see from Fig. 2, both background correc-
tion [Fig. 2(c)] and dual morphological operation [Fig. 2(d)] en-
hanced the mass pattern, but dual morphological operation re-
moved more structural noise inside the mass region which in
turn would improve the mass segmentation results.

III. M ODEL-BASED SEGMENTATION

A. Statistical Modeling

Given a digital image consisting of pixels, assume
this image contains regions. By randomly reordering all
pixels in the underlying probability space, one can treat pixel
labels as random variables and introduce a prior probability
measure . Then the FGGM probability density function (pdf)
of gray level of each pixel is given by [17]

(8)

where is the gray level of pixel, and is the number of gray
levels. s are conditional region pdfs with the weighting
factor , satisfying , and 1. The general-
ized Gaussian pdf given regionis defined by

(9)

where is the mean, is the Gamma function. is a pa-
rameter related to the variance. It can be shown that when

(a) (b)

(c) (d)

Fig. 2. Original and enhancement result of the mass patch using
dual-morphological operation. (a) Original image blockf(i; j). (b)
Texturesr (i; j). (c) Background correction resultr (i; j). (d) Enhanced
resultf (i; j).

, one has the Gaussian pdf; when 1.0, one has the
Laplacian pdf. When 1, the distribution tends to a uniform
pdf; when 1, the pdf becomes sharp. Therefore, the gener-
alized Gaussian model is a suitable model to fit the histogram
distribution of those images whose statistical properties are un-
known since the kernel shape can be controlled by selecting dif-
ferent values.

The whole image can be well approximated by an in-
dependent and identically distributed random field. The
corresponding joint pdf is

(10)

where , and . is given
in (9). Based on the joint probability measure of pixel images,
the likelihood function under FGGM modeling can be expressed
as where

denotes the model parameter set.

B. Model Identification

With an appropriate system likelihood function, the objective
of model identification is to estimate the model parameters by
maximizing the likelihood function, or equivalently minimizing
the relative entropy between the image histogram and
the estimated pdf , where is the gray level. Based on
the FGGM model, the EM algorithm is applied to estimate the
model parameters. The EM algorithm is an iterative technique
for maximum-likelihood (ML) estimation [20]. Recently, it has
been used in many medical imaging applications [15]. Instead
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of evaluating directly the value of ML, we use the global rel-
ative entropy (GRE) between the histogram and the estimated
FGGM distribution to measure the performance of parameter
estimation, given by

GRE (11)

Motivated by the same spirit of conventional EM algorithm
for finite normal mixtures (FNMs), we formulated the EM al-
gorithm to estimate the parameter values of the FGGM. The al-
gorithm is summarized as follows.

EM Algorithm:

1) For
• , given initialized
• E-step: for ,

compute the probabilistic membership

(12)

• M-step: for , compute the updated
parameter estimates

(13)
• When GRE GRE

is satisfied, go to Step 2 Otherwise, and
go to E-Step.

2) Compute GRE, and go to Step 1.
3) Choose the optimalwhich corresponds to the minimum

GRE.
As we mentioned in Section I, the two important parameters

in model selection are and . Determination of the region
parameter directly affects the quality of the resulting model
parameter estimation and in turn, affects the result of segmen-
tation. In this paper we propose an approach to determine the
value of based on two popular information theoretic criteria
introduced by Akaike [23] and by Rissanen [24]. Akaike pro-
posed to select the model that gives the minimum Akaike infor-
mation criterion (AIC), defined by

AIC (14)

where is the ML estimate of the model parameter set,
and is the number of free adjustable parameters in the model
[15], [23]. AIC criterion will select the correct number of the
image regions when

AIC (15)

Rissanen addressed the problem from a quite different point
of view. Rissanen reformulated the problem explicitly as an in-
formation coding problem in which the best model fitness is
measured such that it assigns high probabilities to the observed
data while at the same time the model itself is not too complex to
describe [24]. The model is selected by minimizing the total de-
scription length defined by minimum description length (MDL)

(16)

Similarly, the correct number of the distinctive image regions
will be estimated when

(17)

C. Bayesian Relaxation Labeling

Once the FGGM model is given, a segmentation problem is
the assignment of labels to each pixel in the image. A straight-
forward way is to label pixels into different regions by maxi-
mizing the individual likelihood function . This approach
is called ML classifier, which is equivalent to a multiple thresh-
olding method. Usually, this method may not achieve a good
performance since there is lack of local neighborhood informa-
tion to be included to make a good decision. CBRL algorithm
[25] is one of the approaches, which can incorporate the local
neighborhood information into labeling procedure and thus im-
prove the segmentation performance. In this study, we devel-
oped the CBRL algorithm to perform/refine pixel labeling based
on the localized FGGM model, which is defined as follows.

Let be the neighborhood of pixelwith an template
centered at pixel. An indicator function is used to represent the
local neighborhood constraints , where
and are labels of pixels and , respectively. Note that pairs
of labels are now either compatible or incompatible. Similar to
reference [25], one can compute the frequency of neighbors of
pixel which has the same label valuesas at pixel

(18)

where denotes the labels of the neighbors of pixel. Since
is a conditional probability of a region, the localized FGGM

pdf of gray level at pixel is given by

(19)

where is given in (9). Assuming gray values of the image
are conditional independent, the joint pdf of, given the context
labels , is

(20)

where .
It is known that CBRL algorithm can obtain a consistent la-

beling solution based on the localized FGGM model (19). Since
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TABLE I
DISTRIBUTION OF THE EFFECTIVE SIZE OF THE 186 MASSESUSED IN THIS STUDY. THE EFFECTIVE SIZE IS DEFINED AS THE SQUARE ROOT OF

THE PRODUCT OF THEMAXIMUM AND MINIMUM DIAMETERS OF THEMASS

represents the labeled image, it is consistent if
for all and for [25], where

(21)

Now we can define

(22)

as the average measure of local consistency, and

(23)

represents the local consistency based on. The goal is to find
a consistent labeling which can maximize (22). In the real
application, each local consistency measure can be max-
imized independently. In [25], it has been shown that when

, if attains a local maximum at
, then is a consistent labeling.

Based on the localized FGGM model, can be initialized
by ML classifier

(24)

Then, the order of pixels is randomly permutated and each label
is updated to maximize , i.e., classify pixel into th

region if

(25)

where is given in (9), is given in (18). By consid-
ering (24) and (25),we developed a modified CBRL algorithm
as follows.

CBRL Algorithm:

1) Given , 0
2) Update pixel labels

• Randomly visit each pixel for 1
• Update its label according to

3) When

stop; otherwise, , and repeat Step 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the results of using the morpho-
logical filtering and model-based segmentation approach we
have introduced for enhancement and segmentation of suspi-

cious masses in mammographic images. In addition to the qual-
itative assessment by the radiologists, we introduce several ob-
jective measures to assess the performance of the algorithms we
have proposed for enhancement and segmentation.

A testing data set of 200 mammograms and two simulated
tone images were used to test and evaluate the performance of
the algorithms in this study. The mammograms were selected
from the Mammographic Image Analysis Society (MIAS) data-
base and the Brook Army Medical Center (BAMC) database
created by the Department of Radiology at Georgetown Uni-
versity Medical Center. Of the 200 mammograms, 50 mammo-
grams are normal, and each of the 150 abnormal mammograms
contains at least one mass case of varying size, subtlety, and
location. The areas of suspicious masses were identified by an
expert radiologist based on visual criteria and biopsy proven
results. The total data set includes 113 benign and 73 malig-
nant masses. The distribution of the masses in terms of size
is shown in Table I. The BAMC films were digitized with a
laser film digitizer (Lumiscan 150) at a pixel size of 100m
100 m and 4096 gray levels (12 bits). Before the method was
applied the digital mammograms were smoothed by averaging
4 4 pixels into one pixel. According to radiologists, the size
of small masses is 3–15 mm in effective diameter. A 3-mm
object in an original mammogram occupies 30 pixels in a
digitized image with a 100-m resolution. After reducing the
image size by four times, the object will occupy the range of
about seven to eight pixels. The object with the size of seven
pixels is expected to be detectable by any computer algorithm.
Therefore, the shrinking step is applicable for mass cases and
can save computation time.

Experimental Evaluation of Morphological Enhance-
ment: In order to justify the suitability of morphological
structural elements, the geometric properties of the contexts
and textures in mammograms were studied. The basic idea
is to keep all mass-like objects within certain size range and
remove all others by using the proposed morphological filters
with specific structural elements. At the resolution of 400

m, a disk with a diameter of seven pixels was chosen as the
morphological structuring elements to extract textures in
mammograms. Since the smallest masses have seven pixels in
diameter with the resolution of 400m, this procedure would
not destroy mass information. For the purpose of background
correction, a disk with a diameter of 75 pixels was used as
the morphological structuring element . An object with a
diameter of 75 pixels corresponds to 30 mm in the original
mammogram. This indicates that all masses with sizes up to
30 mm can be enhanced by background correction. Masses
larger than 30 mm are rare cases in the clinical setting. In the
last stage of our approach, we applied morphological opening
and closing filtering using a disk with a diameter of five to
eliminate small objects which also contribute to texture noise.
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(a) (b)

Fig. 3. (a) Original simulated test image for model selection (k = 4, SNR= 10 dB) and (b) the AIC/MDL curves in model selection (� = 30).

All testing mammograms were processed using the proposed
enhancement approach with the suggested structuring element

and . Fig. 5 shows processed mammogram examples
using the morphological enhancement. Compared the enhanced
results [Fig. 5(b) and (d)] with the original mammograms
[Fig. 5(a) and (c)], the proposed method not only enhanced all
suspected mass patterns and reduced the texture noise, but also
removed the background noise. In summary, the proposed mor-
phological enhancement approach can enhance mass patterns
and remove texture structure noises. For dense mammograms,
such as the second example in Fig. 5(c) and (d), the mass
is obscured by dense fibroglandular tissues, our experience
shows applying the dual morphological operation to remove
the fibroglandular tissue background is useful. In addition
to the visual evaluation by the radiologist, we performed the
segmentation to assess the effectiveness of the morphological
filtering, based on the enhanced mammograms and the original
mammograms.

Simulated Evaluation of Segmentation Algorithms:The
performance of model selection using two frequently used
methods, i.e., the AIC and MDL [22], were first tested and
compared in the simulation study. The computer-generated data
was made up of four overlapping normal components. Each
component represents one local region. The value for each
component were set to a constant value, the noise of normal
distribution was then added to this simulation digital phantom.
Three noise levels with different variance were set to keep the
same signal-to-noise ratio (SNR), where SNR is defined by

SNR (26)

where is the mean difference between regions, andis
the noise power. The original data for the simulation study are

(a) (b)

(c) (d)

Fig. 4. Image segmentation by CBRL on simulated image (with initialization
by ML classification). (a) ML initialization. (b) First iteration in CBRL. (c)
Second iteration in CBRL. (d) Third iteration in CBRL.

TABLE II
COMPARISON OFCBRL, ICM, AND MICM A LGORITHM: SIMULATED DATA

given in Fig. 3(a). The AIC and MDL curves, as functions of the
number of local clusters , are plotted in Fig. 3(b). According
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(a) (b) (c) (d)

Fig. 5. Examples of mass enhancement. (a) Original mammogram. (b) Enhanced mammogram. (c) and (d) Another original mammogram and its enhanced result.

to the information theoretic criteria, the minima of these curves
indicate the correct number of the local regions. From this ex-
perimental figure, it is clear that the number of local regions
suggested by these criteria are all correct.

For the validation of image segmentation using CBRL, we
apply the algorithm first to a simulated image. We use ML clas-
sifier to initialize image segmentation, i.e., to initialize the quan-
tified image by selecting the pixel label with largest likelihood
at each node. The classification error after initialization is uni-
formly distributed over the spatial domain as shown in Fig. 4(a).
Our experience suggested this to be a very suitable starting point
for contextual relaxation labeling [21]. The CBRL is then per-
formed to fine tune the image segmentation. It should be em-
phasized that the ground truth is known in this simulated ex-
periment, the percentage of total classification error is used as
the criterion for evaluating the performance of segmentation
technique. In Fig. 4(a)–(d), the initial segmentation by the ML
classification and the stepwise results of three iterations in the
CBRL are presented. In this experiment, algorithm initializa-
tion results in an average classification error of 30%. It can
be clearly seen that a dramatic improvement is obtained after
several iterations of the CBRL by using local constraints de-
termined by the context information. In addition, the conver-
gence is fast as one can see, after the first iteration most of
the misclassification are removed. We have also implemented
two other independent and popular algorithms, namely, the it-
erated conditional mode (ICM) and the modified iterated con-
ditional mode (MICM) algorithms, so as to assess the compar-
ative performance of the segmentation results among different
approaches [21], [22]. The only assumption being made by these
three methods is the Markovian property of the context images
which can be well justified by the underlying cell oncology
and pathology. We have applied these three algorithms to the
same testing image and the corresponding classification errors
are presented in Table II. The final percentage of classification
errors for Fig. 4(d) is 0.7935%. From this experimental compar-
ison, it can be concluded that three algorithms achieved com-

TABLE III
COMPUTEDAICS FOR THEFGGM MODEL WITH DIFFERENT�

TABLE IV
COMPUTED MDLS FOR THEFGGM MODEL WITH DIFFERENT�

parable segmentation accuracy and the result produced by the
MICM algorithm is most superior, though in terms of computa-
tional complexity the CBRL algorithm is the least. It should be
noticed that since in MICM algorithm an inhomogeneous con-
figuration of the Markov random field is used, its superior per-
formance is reasonable.

On Model-Based Segmentation—Real Case Study:In the
real case study, we used two information criteria (AIC and
MDL) to determine . Tables III and IV shows the AIC and
MDL values with different and of the FGGM model based
on one original mammogram. As it can be seen from Tables III
and IV, although with different , all AIC and MDL values
achieve the minimum when 8. It indicates that AIC and
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(a) (b)

Fig. 6. AIC and MDL curves with different number of regionK. (a) Result based on the original mammogram, the optimalK = 8. (b) Result based on the
enhanced mammogram, the optimalK = 4.

MDL are relatively insensitive to the change of. With this
observation, we can decouple the relation betweenand
and choose the appropriate value of one while fixing the value
of another. Fig. 6(a) and (b) are two examples of AIC and MDL
curves with different and fixed 3.0. Fig. 6(a) is based on
the original mammogram and Fig. 6(b) is based on the enhanced
mammogram. As we can see in Fig. 6(a), both criteria achieved
the minimum when 8. It should be noticed that though no
ground truth is available in this case, our extensive numerical
experiments have shown a very consistent performance of
the model selection procedure and all the conclusions were
strongly supported by the previous independent work reported
by [14]. Fig. 6(b) indicates that 4is the appropriate
choice for the mammogram enhanced by dual morphological
operation. This is believed to be reasonable since the number
of regions decrease after background correction.

We fixed 8, and changed the value offor estimating
the FGGM model parameters using the proposed EM algorithm
with the original mammogram The GRE value between the his-
togram and the estimated FGGM distribution was used as a mea-
sure of the estimation bias. We found that GRE achieved a min-
imum distance when the FGGM parameter 3.0 as shown in
Fig. 7. The similar result was shown when we applied the EM
algorithm to the enhanced mammogram with 4. This in-
dicated that the FGGM model might be better than the FNM
model ( 2.0) in modeling mammographic images when
the true statistical properties of mammograms are generally un-
known, though the FNM has been most often chosen in many
previous work [15].

After the determination of all model parameters, every pixel
of the image was labeled to a different region (from 1 to)
based on the CBRL algorithm. We then selected the brightest re-

TABLE V
COMPARISON OFSEGMANTATION ERRORRESULTING FROMNONCONTEXTUAL

AND CONTEXTUAL METHODS

gion, which corresponding to label, plus a criterion of closed
isolated area, as the candidate region of suspicious masses. Ac-
cording to the visual inspections by the radiologists, when we
use instead of , the results are over-segmented. For the
case of using , the results are under-segmented. In order
to quantify the performance differences between the different
segmentation methods, several groups have suggested that the
segmentation results may be compared against radiologists’ out-
lines of the lesions [3]. Though the proposed comparison mea-
sures are quantitative, the performance measures are still quali-
tative, since the reference base (e.g., gold standard by the radi-
ologists) is qualitative, subjective, and imperfect. Therefore, in
this model-supported approach, in addition to the visual inspec-
tions by the radiologists, we have also introduced an objective
measure, the GRE between the histogram of the pixel images

and the FGGM of thesegmentedimage to assess
the performance of the segmentation, defined by

GRE (27)

where is the context image estimated by the segmentation al-
gorithm. Considering that the ergodic theorem is the most fun-
damental principle in the detection and estimation theory, it is
believed that when a good segmentation is achieved, the dis-
tance between the and should be minimized and
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(a) (b)

(c) (d)

Fig. 7. Comparison of learning curves and histogram of the original mammogram with different�, k = 8. The optimal� = 3.0. (a)� = 1.0, GRE= 0.0783.
(b) (a)� = 2.0, GRE= 0.0369. (c)� = 3.0, GRE= 0.0251. (d)� = 4.0, GRE= 0.0282.

(a) (b) (c) (d)

Fig. 8. Suspected mass segmentation results based on the original mammogram. (b) Result based on the enhanced mammogram,K = 4,� = 3.0. (c) and (d)
Results based on another original mammogram and its enhanced image.
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(a) (b) (c) (d)

Fig. 9. Examples of normal mixed fatty and glandular mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c)
Enhanced mammogram. (d) Result based on the enhanced mammogram,k = 4,� = 3.0.

(a) (b) (c) (d)

Fig. 10. Examples of normal dense mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c) Enhanced
mammogram. (d) Result based on the enhanced mammogram,k = 4,� = 3.0.

this measure links the image text and its sample averages. Our
experience has suggested that this post-segmentation measure
may be a suitable objective criterion for evaluating the quality
of image segmentation in a fully unsupervised situation [22],
[26]–[28]. Table V shows our evaluation data from three dif-
ferent segmentation methods when applied to the real images.

Performance of Combined Morphological Filtering and
Model-Based Segmentation using a Larger Database:The
proposed segmentation method was used to extract suspicious
mass regions from the 200 testing mammograms. Without en-
hancement, a total of 1142 potential mass regions were isolated
including 114 of the 186 true masses. With enhancement, a total
of 3143 potential mass regions were extracted including 181 of
the 186 true masses. The results demonstrated that more true
masses were picked up after enhancement although more false
cases were also included. The undetected areas mainly occurred
at the lower intensity side of the shaded objects or obscured by
fibroglandular tissues that, however, were extracted on morpho-

logical enhanced mammograms. In addition, when the margins
of masses are ill defined, only parts of suspicious masses were
extracted from the original mammograms. For the purpose of
“lesion site selection,” we believe that the sensitivity should be
the sole criterion for the performance evaluation of the method.
We have 181/186 versus 114/186. Our method is unsupervised
and automatic and does not involve any detection effort at this
moment. To our best knowledge, there is no objective criterion
available for the evaluation of image enhancement performance
before a detection effort is involved. We only claimed that the
enhancement step is important and effective with respect to the
purpose of “lesion site selection.”

Fig. 8 demonstrates some segmentation results based on the
original and enhanced mammograms. We compared the seg-
mentation results based on the enhanced mammogram (
4, and 3.0) with those based on the original mammogram
( 8, and 3.0) as shown in Fig. 8. Comparing the re-
sults in Fig. 8(b) with those in Fig. 8(a), we can see that after
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Fig. 11. Comparison results of segmantation based on the enhanced mammograms. Black outlines denote the computer-segmented result. White outlinesdenote
ther radiologist-segmanted results.

enhancement, a more accurate region was detected for the sus-
pected mass which has ill-defined margin. Getting an accurate
suspected region is a crucial issue since geometric features are
extracted based on suspected regions and these features are very
important for further true mass detection. In addition, we ob-
served that one suspected mass was missed in Fig. 8(a) but was
detected in Fig. 8(b). As we have mentioned in Section I, none of
the suspected masses should be missed in the segmentation step.
Fig. 8(c) and (d) demonstrate the segmentation of a suspected

mass that lies in dense breast tissue. As shown in Fig. 8(c), the
whole fibroglandular tissue area was segmented when based on
the original mammogram. After enhancement, the suspected re-
gion was segmented exactly as shown in Fig. 8(d).

We have also included the segmentation results on the normal
mammograms. Fig. 9 demonstrate the segmentation results
based on the original and enhanced mixed fatty and glandular
mammograms. Fig. 10 demonstrate the segmentation results
based on the original and enhanced dense mammograms. We



300 IEEE TRANSACTIONS ON MEDICAL IMAGES, VOL. 20, NO. 4, APRIL 2001

would like to emphasize that the objective of this paper is
to provide a segmentation technique which can enhance and
extract potential mass site from the background so that the
characterization of the related mass pattern can be accurately
extracted in terms of focused feature selection and analysis.
The method of course will produce many mass-like areas, but
it will be a plausible outcome since the accurate description of
nonmass cases characterized by mass-like sites will benefit the
follow-on detection step where the performance of the classifier
depends on an accurate separation of mass and nonmass in the
featured spaces. The details will be described in [29].

For the purpose of evaluating the performance of the segmen-
tation method, we used both simulated studies and expert visual
inspection to validate the methods and results. The radiologist
has concluded that the lesion characteristics after the proposed
enhancement have been better displayed and all possible lesion
areas have been successfully identified. In addition to the vi-
sual inspection, we have measured the overlap between the com-
puter-segmented and the radiologist segmented mass regions to
evaluate our method. Fig. 11 shows the comparison results of
segmentation based on the enhanced mammograms. Fig. 11 in-
cludes 60 benign and malignant mass patches which were cut
from the whole mammograms after the segmentation. The white
outline was drawn by the radiologist while the black outline was
produced by the computer and was superimposed upon the orig-
inal image. As we can see from Fig. 11, for most of cases, the
ratio of mutual overlap area of the radiologist segmented mass
region and the computer-segmented mass region to the radiol-
ogist segmented mass area is large than 50%. In addition, even
the poorest result picked the true lesion in the correct location
and depicted the characteristics of the mass reasonably. It is im-
portant to understand that “lesion area segmentation” is not our
objective, so there is no “best” or “worst” segmentation results.
Our objective is “lesion site selection” with a possible highest
sensitivity through a global unsupervised enhancement and seg-
mentation scheme.

V. CONCLUSION

In this paper, we propose a combined method of using mor-
phological operations, a FGGM modeling, and a CBRL to en-
hance and segment various breast tissue textures and suspicious
mass lesions from mammographic images. This phase is a cru-
cial step in mass detection for an improved CAD. We empha-
sized the importance of model selection which includes the se-
lection of the number of image regions and the selection of
FGGM kernel shape controlled by. The experimental results
indicate that the suspected masse sites selection can be affected
by different and . We proposed the EM algorithm together
with the information theoretic criteria to determine the optimal

and . With optimal and , the segmentation results can be
significantly improved. We also showed that with the proposed
pattern-dependent enhancement algorithm using morphological
operations, the subtle masses can be segmented more accurately
than those when the original image is used for extraction without
enhancement. To summarize, the morphological filtering en-
hancement combined with the stochastic model-based segmen-
tation is an effective way to extract mammographic suspicious

patterns of interest, and thereby may facilitate the overall per-
formance of mammographic CAD of breast cancer.

ACKNOWLEDGMENT

The authors would like to thank Z. Gu of the Lombardi
Cancer Center and I. Sesterhenn of the Armed Forces Institute
of Pathology for their scientific input on the knowledge of cell
oncology and pathology, and R. Shah MD, Director of Breast
Imaging, BAMC for his evaluation of cases to our database.

REFERENCES

[1] H. Kobatake, M. Murakami, H. Takeo, and S. Nawano, “Computerized
detection of malignant tumors on digital mammograms,”IEEE Trans.
Med. Imag., vol. 18, pp. 369–378, May 1999.

[2] R. Zwiggelaar, T. C. Parr, J. E. Schumm, I. W. Hutt, C. J. Taylor, S.
M. Astley, and C. R. M. Boggis, “Model-based detection of spiculated
lesions in mammograms,”Med. Image Anal., vol. 3, no. 1, pp. 39–62,
1999.

[3] M. A. Kupinski and M. L. Giger, “Automated seeded lesion segmen-
tation on digital mammograms,”IEEE Trans. Med. Imag., vol. 17, pp.
510–517, Aug. 1998.

[4] N. Karssemeijer and G. M. te Brake, “Detection of stellate distortions
in mammogram,”IEEE Trans. Med. Imag., vol. 15, pp. 611–619, Oct
1996.

[5] W. K. Zouras, M. L. Giger, P. Lu, D. E. Wolverton, C. J. Vyborny, and
K. Doi, “Investigation of a temporal subtraction scheme for computer-
ized detection of breast masses in mammograms,”Excerpta Medica, vol.
1119, pp. 411–415, 1996.

[6] N. Petrick, H. P. Chan, B. Sahiner, and D. Wei, “An adaptive density-
weighted contrast enhancement filter for mammographic breast mass
detection,”IEEE Trans. Med. Imag., vol. 15, no. 1, pp. 59–67, 1996.

[7] M. Sameti and R. K. Ward, “A fussy segmentation algorithm for mam-
mogram patttion,” inDigital Mammgraphy. ser. International Congress
Series, K. Doi, Ed. Amsterdam, The Netherlands: Elsevier, 1996, pp.
471–474.

[8] W. P. Kegelmeyer Jr., J. M. Pruneda, P. D. Bourland, A. Hillis, M. W.
Riggs, and M. L. Nipper, “Computer-aided mammographic screening
for spiculated lesions,”Radiology, vol. 191, pp. 331–337, 1994.

[9] F. F. Yin, M. L. Giger, C. J. Vyborny, K. Doi, and R. A. Schmidt, “Com-
parison of bilateral-subtraction and single-image processing techniques
in the computerized detection of mammographic masses,”Investigat.
Radiol., vol. 28, no. 6, pp. 473–481, 1993.

[10] B. Zheng, Y. H. Chang, and D. Gur, “Computerized detection of masses
in digitized mammograms using single-image segmentation and a mul-
tilayer topographic feature analysis,”Acad. Radiol., vol. 2, pp. 959–966,
1995.

[11] H. D. Li, M. Kallergi, L. P. Clarke, V. K. Jain, and R. A. Clark, “Markov
random field for tumor detection in digital mammography,”IEEE Trans.
Med. Imag., vol. 14, pp. 565–576, Sept. 1995.

[12] M. L. Giger, C. J. Vyborny, and R. A. Schmidt, “Computerized charac-
terization of mammographic masses: Analysis of spiculation,”Cancer
Lett., vol. 77, pp. 201–211, 1994.

[13] T. K. Lau and W. F. Bischof, “Automated detection of breast tumors
using the asymmetry approach,”Comput. Biomed. Res., vol. 24, no. 9,
pp. 1501–1513, 1995.

[14] M. J. Bianchi, A. Rios, and M. Kabuka, “An algorithm for detection
of masses, skin contours, and enhancement of microcalcifications in
mammograms,” inProc. , Symp. Computer Assisted Radiology, Win-
ston-Salem, NC, June 1994, pp. 57–64.

[15] T. Lei and W. Sewchand, “Statistical approach to x-ray CT imaging and
its application in image analysis–Part II: A new stochastic model-based
image segmentation technique for x-ray CT image,”IEEE Trans. Med.
Imag., vol. 11, pp. 62–69, Feb. 1992.

[16] Y. Wang, T. Adali, and S.-C. B. Lo, “Automatic threshold selection using
histogram quantization,”SPIE J. Biomedical Optics, vol. 2, no. 2, pp.
211–217, April 1997.

[17] J. Zhang and J. W. Modestino, “A model-fitting approach to cluster vali-
dation with application to stochastic model-based image segmentation,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 1009–1017, Oct.
1990.



LI et al.: COMPUTERIZED RADIOGRAPHIC MASS DETECTION—PART I 301

[18] H. Li, K. J. R. Liu, Y. Wang, and S. C. Lo, “Morphological filtering and
stochastic modeling-based segmentation of masses on mammographic
images,” inProc. IEEE Nuclear Science Symp. Medical Imaging Conf.,
1996, pp. 1792–1796.

[19] J. Serra,Image Analysis and Mathematical Morphology. London, U.
K.: Academic, 1982.

[20] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,”J. Roy. Statist. Soc. Ser. B,
vol. 39, pp. 1–38, 1977.

[21] Y. Wang, T. Adali, C. M. Lau, and S. Y. Kung, “Quantitative analysis of
MR brain image sequences by adaptive self-organizing finite mixtures,”
J. VLSI Signal Processing, vol. 18, no. 3, pp. 219–240, 1998.

[22] Y. Wang, T. Adali, S. Y. Kung, and Z. Szabo, “Quantification and seg-
mentation of brain tissues from MR images: A probabilistic neural net-
work approach,”IEEE Trans. Image Processing, vol. 7, pp. 1165–1181,
Aug. 1998.

[23] H. Akaike, “A new look at the statistical model identification,”IEEE
Trans. Automat. Contr., vol. 19, no. 6, pp. 716–723, 1974.

[24] J. Rissanen, “Modeling by shortest data description,”Automat., vol. 14,
pp. 465–471, 1978.

[25] R. A. Hummel and S. W. Zucker, “On the foundations of relaxation la-
beling processes,”IEEE Trans. Pattern Anal. Machine Intell., vol. 5, pp.
267–286, Mar. 1983.

[26] A. Hoover, G. J. Baptoste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof,
K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher, “An ex-
perimental comparison of range image segmentation algorithms,”IEEE
Trans. Pattern Anal. Machine Intell., vol. 18, pp. 673–688, July 1996.

[27] Y. J. Zhang, “A survey on evaluation methods for image segmentation,”
Pattern Recogn., vol. 29, no. 8, pp. 1335–1346, 1996.

[28] A. M. Bensaid, L. O. Hall, J. C. Bezdek, L. P. Clarke, M. L. Silbiger, J.
A. Arrington, and R. F. Murtagh, “Validity-guided clustering with ap-
plications to image segmentation,”IEEE Trans. Fuzzy Syst., vol. 4, pp.
112–123, May 1996.

[29] H. Li, Y. Wang, K. J. R. Liu, S.-C. B. Lo, and M. T. Freedman, “Com-
puterized Radiographic Mass Detection—Part II: Decision Support by
Featured Database Visualization and Modular Neural Networks,”IEEE
Trans. Med. Imag., vol. 20, no. 4, pp. 302–313, Apr. 2001.


