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Computerized Radiographic Mass Detection—Part I:
Lesion Site Selection by Morphological Enhancement
and Contextual Segmentation

Huai Li, Yue Wang, K. J. Ray Liu*, Shih-Chung B. Lo, and Matthew T. Freedman

Abstract—This paper presents a statistical model supported of suspected masses is considered a critical and first step due
approach for enhanced segmentation and extraction of suspicious to the variability of normal breast tissue and the lower contrast
mass areas from mammographic images. With an appropriate 5 jj|_defined margins of masses [3], [6], and since no subtle

statistical description of various discriminate characteristics hould b issed bef furth vsi
of both true and false candidates from the localized areas, an MaSSES Should be missed bejore any turther analysis.

improved mass detection may be achieved in computer-assisted A humber of image processing techniques have been pro-
diagnosis (CAD). In this study, one type of morphological oper- posed to perform suspicious mass site selection. Kobatzde

ation is derived to enhance disease patterns of suspected massepl] proposed using a iris filter to detect tumors as suspicious re-
by cleaning up unrelated background clutters, and a model-based ions with very weak contrast to their background. Sawtei

image segmentation is performed to localize the suspected mas 7 df s t tition th hic i dat
areas using stochastic relaxation labeling scheme. We discuss the /] USed fuzzy sets to partition the mammographic image data.

importance of model selection when a finite generalized Gaussian Lau and Yinet al.independently proposed using bilateral-sub-
mixture is employed, and use the information theoretic criteriato traction to determine possible mass locations [9], [13]. Some
determine the optimal model structure and parameters. Examples other investigators proposed using pixe|-based feature segmen-

are presented to show the effectiveness of the proposed methodsaiinn of spiculated masses [4], [8]. Kegelmeyer has reported
on mass lesion enhancement and segmentation when applied to . Its for detecti ' lated t b donl |
mammographical images. Experimental results demonstrate that promising resulis for detecling spiculated tumors based on loca

the proposed method achieves a very Satisfactory performanoe aSedge CharaCteriStiCS and Laws texture features [8] Karssemeijer
a preprocessing procedure for mass detection in CAD. et al. [4] proposed to identify stellate distortions by using the

Index Terms—Finite mixture, image enhancement, image seg- orientation map of line-like strqctures. Recently, Petetlal.
mentation, information criterion, morphological filtering, relax-  [6] proposed a two-stage adaptive density-weighted contrast en-
ation labeling. hancement filtering technique along with edge detection and
morphological feature classification for automatic segmentation
of potential masses. Kupinski and Giger [3] presented a radial
gradientindex-based algorithm and a probabilistic algorithm for

N RECENT years, several computer-assisted diagnosiseded lesion segmentation.

(CAD) schemes for mass detection and classification Nevertheless, to our best knowledge, few work has been ded-
have been developed [1]-[13]. Though it may be difficult t@cated to improve the task of lesion site selection although it is
compare the relative performance of these methods, becaimgeed a very crucial step in CAD. Especially, few studies have
the reported performance strongly depends on the degreeuséd and justified model-based image processing techniques for
subtlety of masses in the selected database, accurate selecli®upervised lesion site selection [11]. Zwiggeleial devel-

oped a statistical model to describe and detect the abnormal pat-
tern of linear structures of spiculated lesions [2]. In their work,
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Digital : Y Decsion & | FGGM modeling, model selection, and parameter estimation
imaging i — . | Evaluation are presented in Section Ill. This is followed by a discussion
- I l=ar On-lina | on the selection of suspicious masses using the CBRL approach.
J‘ : Inbarfars T Evaluation results are given and discussed in Section IV. Finally,
Image R — rnowledge [ the paper is concluded by Section V.
Processing P —— Encoding
q_L Clinicaan . f Il. MORPHOLOGICAL ENHANCEMENT
Feature : Mﬂ,ﬂ.‘—" Festured One of the main difficulties in suspicious mass segmentation
Extraction [ Databazs is that mammographic masses are often overlapped with dense

breast tissues. Therefore, it is necessary to remove bright back-
ground caused by dense breast tissues while preserving the fea-
tures and patterns related to the masses. For this purpose, back-
ground correction is an important step for mass segmentation.
with preenhanced pattern of interest being segmented. The oWy propose a mass pattern-dependent background removal ap-
assumption for suspected mass site selection is that suspegpig@ich using morphological operations.

mass areas should be brighter than the surrounding breast tissues

which is valid for most of the real cases. When some mass&s Morphological Filtering Theory

lie either within an inhomogeneous pattern of fibroglandular . . .
tissue or are partially or completely surrounded by fibroglan- Morphological operations can be employed for many image

dular tissue, enhancement of mass-related signals is im Ort%)rg{ocessing purposes, including edge detection, region segmen-
' 9 portgl fon, and image enhancement. The beauty and simplicity of

Fig. 1 shows a general block diagram of CAD systems. Thljﬁathematical morphology approach come from the fact that a

paper focuses on image processing bloc_k, to just automaH rge class of filters can be represented as the combination of
cally pick up all possible lesion sites. We aim on two essenti o simple operations: erosion and dilation. L&tdenote the

issues in the stochastic modgl—based Image SegmentaF'on:s%?'ofintegers and(i, j) denote a discrete image signal, where
hancement and model selection. Based on the differential 989 domain set is given bii, j1 € Ny x No, Ny x Ny C 22

metric characteristics of masses against the background tiss 8o the range set by} € Ns, Ns C Z. A structuring element
we propose one type of morphological operation to enhance t 8s a subset inZ2 with a sir;"nple geometrical shape and size.

mass patterns on mammograms. Then we employ a finite 9¥%note B — {—b: b € B} as the symmetric set &8 and
eralized Gaussian mixture (FGGM) distribution to model th . asthe translétion OB by (1, t), where(t,, t2) € 22
t1, t2 ’ ’ ’ .

histogram of the mammograms where the statistical propertiﬁ$é erosionf & B* and dilationf & B* can be expressed as
of the pixel images are largely unknown and are to be inc 9]
porated. We incorporate the EM algorithm with two informa-

Fig. 1. Major components in CAD.

tion theoretic criteria to determine the optimal number of image (FoB)G, j)= min (f(t, t2)) 1)
regions and the kernel shape in the FGGM model. Finally, we T t1,t2€B; ’
apply a contextual Bayesian relaxation labeling (CBRL) tech- (f®B)(i,j) = max (f(ts, t2)). )
nigue to perform the selection of suspected masses. The major ’ t1,t2€B; ; ’
differences of our work from the previous work [1]-[6], [8]-[13] ) ) )
are as follows. On the other hand, openinge B and closingf e B are defined
as [19
1) We present a new algorithm of morphological filtering [19]
forimage enhancement in which the combined operations BYi. i) = & B @ B)(i. i 3
are applied to the original gray tone image and the higher (FoB)i, 4) =/ ) UCE ®)
sensitive lesion site selection of the enhanced images are (feB)(i,j)=((f® B")e B)(i, j) 4)
observed.

2) We justify and pilot test the FGGM distribution in mod- A gray value image can be viewed as a two-dimensional sur-
eling mammographic pixel images together with a modéice in a three-dimensional space. Given an image, the opening
selection procedure based on the two information theoperation removes the objects, which have size smaller than the
retic criteria. This allows an automatic identification ofstructuring element, with positive intensity. Thus, with the spec-
both the numberK) and kernel shapey) of the distri- ified structuring element, one can extract different image con-
butions of tissue types. texts by taking the difference between the original and opening

3) We develop a new algorithm (CBRL) for segmentingrocessed image, which is known as “tophat” operation [19].
mass areas where the comparable results are achieved
as those using Markov random field model-based. Morphological Enhancement Algorithms

approaches while with much less computational com- gased on the properties of morphological filters, we designed
plexity. one type of mass pattern-dependent enhancement approaches.
The presentation of this paper is organized as follows. In Seldae algorithm is implemented by dual morphological tophat op-
tion 11, the proposed dual morphological operation enhancemeamations following by a subtraction which is described as fol-
technique is described in detail. The theory and algorithm dows.
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Step 1) The textures without the pattern information of i
terest are extracted by a tophat operation

7’1(1.’ J) = InaX(O’ [f(L’ J) - (f © Bl)(i’ J)]) )

where f (i, j) is the original image, and, (¢, ) is
the residue image between the originalimage and t
opening of the original image by a specified stru
turing element3; . The size ofB; should be chosen
smaller than the size of masses.
Step 2) Letr(4, j) be the mass pattern enhanced image by
background correction, i.e., by the second tophat op-
eration onf (i, j)

ra(t, 7) = max(0, [f(5, j) — (f o B2)(, 1)) (6)

where B5 is a specified structuring element whic
has a larger size than masses.
Step 3) The enhanced imagig¢, j) can be derived as

J1(G, §) = max(0, [ra(i; 7) = r1(i, )))- )

This operation is called “dual morphological operation.” It
. o © (d)
can remove the background noise and the structure noise inside

the suspected mass patterns. Fig. 2 shows the mass patch"jg2: Original and enhancement result of the mass patch using
. dual-morphological operation. (a) Original image block(i, j). (b)

the enhanced results of each step using the dual morphologiggtures:, (i, ;)

operation. As we can see from Fig. 2, both background correesultfi(z, j).

tion [Fig. 2(c)] and dual morphological operation [Fig. 2(d)] en-

hanced the mass pattern, but dual morphological operation fe= 2.0, one has the Gaussian pdf; when= 1.0, one has the
moved more structural noise inside the mass region which igpjacian pdf. Whem: > 1, the distribution tends to a uniform

. (c) Background correction resul (i, j). (d) Enhanced

turn would improve the mass segmentation results. pdf; whena <1, the pdf becomes sharp. Therefore, the gener-
alized Gaussian model is a suitable model to fit the histogram

[ll. M ODEL-BASED SEGMENTATION distribution of those images whose statistical properties are un-

A. Statistical Modeling known since the kernel shape can be controlled by selecting dif-

. L . _ ferenta values.
Given a digital image consisting @¥f; x N, pixels, assume The whole image can be well approximated by an in-

this image containg(" regions. By randomly reordering all yopendent and identically distributed random fiéd The
pixels in the underlying probability space, one can treat pix@brresponding joint pdf is

labels as random variables and introduce a prior probability

measurer;,. Then the FGGM probability density function (pdf) NNz K
of gray level of each pixel is given by [17] P(x) = H Z T.Pr(Ts) (10)
K =1 k=1
pl) =Y mpi(zi), i=1,..., NiNy, wherex = [z1, 2, ..., Zn,n,], @andx € X. pi(z;) is given
k=1 in (9). Based on the joint probability measure of pixel images,
z;=0,1,..., L-1 (8) thelikelihood function under FGGM modeling can be expressed
asL(r) = H?;IINZ pe(z;) wherer : {K, «, 7, pg, op, k =
wherexz; is the gray level of pixel, andZ is the number of gray 1, ..., K} denotes the model parameter set.

levels.px.(x;)s are conditional region pdfs with the weighting
factor 7y, satisfyingr; > 0, andz,i‘z1 7 = 1. The general- B. Model Identification

ized Gaussian pdf given regidnis defined by With an appropriate system likelihood function, the objective

af N of model identification is to estimate the model parameters by
pr(xi) = ST(1/a) exp[— |Be(zi — p)|*],  a>0, maximizing the likelihood function, or equivalently minimizing
the relative entropy between the image histognarfw:) and
1 [T(3/a)]"? the estimated pdp.(u), wherew is the gray level. Based on
Pe = o {F(l/a)} ) the FGGM model, the EM algorithm is applied to estimate the

model parameters. The EM algorithm is an iterative technique
wherey, is the meanl'(-) is the Gamma function3, is a pa- for maximum-likelihood (ML) estimation [20]. Recently, it has
rameter related to the varianeg. It can be shown that when been used in many medical imaging applications [15]. Instead
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of evaluating directly the value of ML, we use the global rel- Rissanen addressed the problem from a quite different point
ative entropy (GRE) between the histogram and the estimatafdriew. Rissanen reformulated the problem explicitly as an in-
FGGM distribution to measure the performance of parametiermation coding problem in which the best model fitness is

estimation, given by measured such that it assigns high probabilities to the observed
data while at the same time the model itself is not too complex to
GREp.||pr) Z px(u Px(u) . (11) describe [24]. The model is selected by minimizing the total de-
r(“) scription length defined by minimum description length (MDL)

Motivated by the same spirit of conventional EM algorithm MDL(K)
for finite normal mixtures (FNMs), we formulated the EM al-

gorithm to estimate the parameter values of the FGGM. The &milarly, the correct number of the distinctive image regions

= —log(£(F1)) + 0.5K log(N1 N2).  (16)

gorithm is summarized as follows. K, will be estimated when
EM Algorithm:
1) FOI‘a = Ominy - - -5 Ymax KO = arg{ ¥nlI} MDL(K)} . (17)
« m = 0, given initializedr(® 1<K <Kuax

e E-step: fori = 1,..., N\No, k = 1,..., K,

compute the probabilistic membership C. Bayesian Relaxation Labeling

ooy Once the FGGM model is given, a segmentation problem is

(m) _ k pk( Z) 12 . . . . .

ik~ Tk (12)  the assignment of labels to each pixel in the image. A straight-
E W;(Cm)pk(xi) forward way is to label pixels into different regions by maxi-

mizing the individual likelihood functiom;(z). This approach

is called ML classifier, which is equivalent to a multiple thresh-
olding method. Usually, this method may not achieve a good
performance since there is lack of local neighborhood informa-

* M-step: fork = 1, ..., K, compute the updated
parameter estimates

( 1 NN tion to be included to make a good decision. CBRL algorithm
w,ﬁ"’*l) = —— Z f,:") [25] is one of the approaches, which can incorporate the local
NNy neighborhood information into labeling procedure and thus im-
N1N2 prove the segmentation performance. In this study, we devel-
u,(c""“) (m+1) Z 2 a:Z opedthe CE_>RL algorithmto perform/rgfine pixel labeling based
; on the localized FGGM model, which is defined as follows.
NiN2 Let 9i be the neighborhood of pixélvith anm x m template
opm ) - (m y Z 20 (@ — )2 centered at pixel. An indicator function is used to represent the
\ NN local neighborhood constraints;;(1;, I;) = I(l;, I;), wherel;

(13)
. WhenIGRlé’"’) (pxllpe) = GRE™ D (ppe)| < ¢
is satisfied, go to Step 2 Otherwise,= m +1 and

andl; are labels of pixel$ andyj, respectively. Note that pairs
of labels are now either compatible or incompatible. Similar to
reference [25], one can compute the frequency of neighbors of

go to E-Step. pixel ¢ which has the same label valukess at pixel
2) Compute GRE, and go to Step 1. .
3) ggoEose the optimalwhich corresponds to the minimum 7r’(:) = p(l; = k|lp:) = —— Z Ik, 1;)  (18)

As we mentioned in Section I, the two important parameters JeOn I
in model selection aré and «. Determination of the region wherels; denotes the labels of the neighbors of pikeSince
parametel directly affects the quality of the resulting modehrk) is a conditional probability of a region, the localized FGGM
parameter estimation and in turn, affects the result of segmealf of gray levelz; at pixeli is given by
tation. In this paper we propose an approach to determine the
value of K based on two popular information theoretic criteria

introduced by Akaike [23] and by Rissanen [24]. Akaike pro- plailla;) = Z Wk p k(i) (19)

posed to select the model that gives the minimum Akaike infor-

mation criterion (AIC), defined by wherepy(z;) is given in (9). Assuming gray values of the image

are conditional independent, the joint pdfgfgiven the context

A|C(K) = -2 1Og([,(f‘ML)) + 2K’ (14) labelsl, is

wheret,,r, is the ML estimate of the model parameter set NiN: K

andXK’ is the number of free adjustable parameters in the model Px|l) = H Z 7rk pk x;) (20)

[15], [23]. AIC criterion will select the correct number of the i=1 k=1

image regiong{, when
g 9 0 wherel = (I; : i =1, ..., N{No).

It is known that CBRL algorithm can obtain a consistent la-

Ko = arg{ wmin AIC(K)} : (15 peling solution based on the localized FGGM model (19). Since

1I<K<Knmax
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TABLE |
DISTRIBUTION OF THE EFFECTIVE SIZE OF THE 186 MASSESUSED IN THIS STUDY. THE EFFECTIVE SIZE |S DEFINED AS THE SQUARE ROOT OF
THE PRODUCT OF THEMAXIMUM AND MINIMUM DIAMETERS OF THEMASS

| 0 — 5mm | 6 —10mm | 11 — 15mm | 16 — 20mm | 21 — 25mm | 26 — 30mm
#] 3 [ 55 78 29 17 4

l represents the labeled image, itis consisteSit(f;) > S;(k), cious masses in mammographic images. In addition to the qual-

forallk=1,..., Kandfori =1, ..., NN, [25], where itative assessment by the radiologists, we introduce several ob-
(@) jective measures to assess the performance of the algorithms we
Si(k) = m pr(wi)- (21) have proposed for enhancement and segmentation.
Now we can define A testing data set of 200 mammograms and two simulated
NiNs tone images were used to test and evaluate the performance of
A(l) = Z <Z (L, k)gi(k)> (22) the algorithms in this study. The mammograms were selected
p— 5 from the Mammographic Image Analysis Society (MIAS) data-

base and the Brook Army Medical Center (BAMC) database
created by the Department of Radiology at Georgetown Uni-
LC; = Z I(l;, k)S;(k), i=1,..., NiN, (23) versity Medical Center. Of the 200 mammograms, 50 mammo-

k grams are normal, and each of the 150 abnormal mammograms

represents the local consistency based.drhe goal is to find contains at least one mass case of varying size, subtlety, and

a consistent labeling which can maximize (22). In the reallocation. The areas of suspicious masses were identified by an
application, each local consistency meashf& can be max- €xpert radiologist based on visual criteria and biopsy proven

imized independently. In [25], it has been shown that whegsults. The total data set includes 113 benign and 73 malig-
Ri;(l;, 1) = Ry(l;, 1), if A(l) attains a local maximum at nant masses. The distribution of the masses in terms of size

as the average measure of local consistency, and

1, thenl is a consistent labeling. is shown in Table I. The BAMC films were digitized with a
Based on the localized FGGM mod&f” can be initialized laser film digitizer (Lumiscan 150) at a pixel size of 106x
by ML classifier 100 :m and 4096 gray levels (12 bits). Before the method was
applied the digital mammograms were smoothed by averaging
150) = arg{max pk(a?i)} ; k=1,..., K. (24) 4 x 4 pixels into one pixel. According to radiologists, the size
K of small masses is 3-15 mm in effective diameter. A 3-mm

Then, the order of pixels is randomly permutated and each lab®lject in an original mammogram occupies 30 pixels in a
l; is updated to maximiz&C;, i.e., classify pixel into kth  digitized image with a 10@sm resolution. After reducing the

region if image size by four times, the object will occupy the range of
@ about seven to eight pixels. The object with the size of seven
li = arg{mgx T Pk (3771)} ; k=1 ...,K (25 pixelsis expected to be detectable by any computer algorithm.

‘ Therefore, the shrinking step is applicable for mass cases and
wherepy(x;) is given in (9),7r,(j) is given in (18). By consid- can save computation time.
ering (24) and (25),we developed a modified CBRL algorithm Experimental Evaluation of Morphological Enhance-

as follows. ment: In order to justify the suitability of morphological
CBRL Algorithm: structural elements, the geometric properties of the contexts
1) Givenl®® m =0 and textures in mammograms were studied. The basic idea
2) Update pixel labels is to keep all mass-like objects within certain size range and
« Randomly visit each pixel for =1,..., N\ N remove all others by using the proposed morphological filters
< Update its label; according to with specific structural elements. At the resolution of 400
pm, a disk with a diameter of seven pixels was chosen as the
z§’"> = arg{max w,ﬁixm)pk(xi)} . morphological structuring elemenf8; to extract textures in
» mammograms. Since the smallest masses have seven pixels in
3) When diameter with the resolution of 40@m, this procedure would
not destroy mass information. For the purpose of background
> A g 10m) . correction, a disk with a diameter of 75 pixels was used as
NN, < 1%, the morphological structuring eleme#ft,. An object with a
. diameter of 75 pixels corresponds to 30 mm in the original
stop; otherwisem = m + 1, and repeat Step 2. mammogram. This indicates that all masses with sizes up to
30 mm can be enhanced by background correction. Masses
IV. EXPERIMENTAL RESULTS AND DISCUSSION larger than 30 mm are rare cases in the clinical setting. In the

In this section, we present the results of using the morphlast stage of our approach, we applied morphological opening
logical filtering and model-based segmentation approach waad closing filtering using a disk with a diameter of five to
have introduced for enhancement and segmentation of sugiminate small objects which also contribute to texture noise.
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Fig. 3. (a) Original simulated test image for model selectian£ 4, SNR= 10 dB) and (b) the AIC/MDL curves in model selectian £ 30).

All testing mammograms were processed using the propos
enhancement approach with the suggested structuring ele
B, and B;. Fig. 5 shows processed mammogram exampl§===t,
using the morphological enhancement. Compared the enhan| _ -
results [Fig. 5(b) and (d)] with the original mammogramg
[Fig. 5(a) and (c)], the proposed method not only enhanced |
suspected mass patterns and reduced the texture noise, but|
removed the background noise. In summary, the proposed
phological enhancement approach can enhance mass patt
and remove texture structure noises. For dense mammogra ;
such as the second example in Fig. 5(c) and (d), the mass () (b)
is obscured by dense fibroglandular tissues, our experie
shows applying the dual morphological operation to remo
the fibroglandular tissue background is useful. In additio
to the visual evaluation by the radiologist, we performed t
segmentation to assess the effectiveness of the morpholog
filtering, based on the enhanced mammograms and the origi
mammograms.

Simulated Evaluation of Segmentation AlgorithnThe
performance of model selection using two frequently us
methods, i.e., the AIC and MDL [22], were first tested an
compared in the simulation study. The computer-generated d
was made up of four overlapping normal components. Each © @
component represents one local region. The value for edd 4. Image segmentation by CBRL on simulated image (with initialization
component were set to a constant value, the noise of norrﬁéfghdci'fesgtfi'gﬁt;g'gég)ﬂ% inuatization. (b) First iteration in CBRL. (c)
distribution was then added to this simulation digital phantom.

Three noise levels with different variance were set to keep the TABLE I
same signal-to-noise ratio (SNR), where SNR is defined by COMPARISON OFCBRL, ICM, AND MICM A LGORITHM: SIMULATED DATA
(AN)Q Ttem CBRL Result ! ICM Result | MICM Result

SNR= 10log;, (26)

o2 Classification Error | 0.7935% | 0.7508% | 0.3113%

where Ay is the mean difference between regions, afds given in Fig. 3(a). The AIC and MDL curves, as functions of the
the noise power. The original data for the simulation study aneimber of local cluster&’, are plotted in Fig. 3(b). According
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@ (b) © (d)

Fig.5. Examples of mass enhancement. (a) Original mammogram. (b) Enhanced mammogram. (c) and (d) Another original mammogram and its enhanced result

to the information theoretic criteria, the minima of these curves TABLE 1II
indicate the correct number of the local regions. From this ex- ~ COMPUTEDAICS FOR THEFGGM MODEL WITH DIFFERENT
perimental figure, it is clear that the number of local regions T =19 =20 =30 P
suggested by these criteria are all correct. 5 651250 650570 650600 650630
For the validation of image segmentation using CBRL, we ~3 646220 644770 645280 646200
apply the algorithm first to a simulated image. We use ML clas- 4 645760 644720 645260 646060
sifier to initialize image segmentation, i.e., to initialize the quan- 5 645760 644700 645120 646040
tified image by selecting the pixel label with largest likelihood _6 645740 644670 645110 645990
at each node. The classification error after initialization is uni- _7 | 645640 644600 645090 645900
formly distributed over the spatial domain as shown in Fig. 4(a). ; 640615505(;3”1) 6’”‘654105(913”1) 64560435(3)(;:“) 6456%15508(8m01n)
Our experience suggested this to be a very suitable starting poir—; 615620 644600 645100 645910

for contextual relaxation labeling [21]. The CBRL is then per-
formed to fine tune the image segmentation. It should be em- TABLE IV
phasized that the ground truth is known in this simulated ex- ~ COMPUTEDMDLS FOR THEFGGM MODEL WITH DIFFERENT

periment, the percentage of total classification error is used a [ a=10 a=20 | a=30 | a=40
the criterion for evaluating the performance of segmentation™ 651270 650500 650630 650660
technique. In Fig. 4(a)—(d), the initial segmentation by the ML 3 646260 644810 645360 646350
classification and the stepwise results of three iterations in the 4 645860 644770 645280 646150
CBRL are presented. In this experiment, algorithm initializa- _5 645850 644770 645280 646100
tion results in an average classification error of 30%. It can _§ 645790 644750 645150 646090
be clearly seen that a dramatic improvement is obtained afte T | 15720 644700 645120 645930
several iterations of the CBRL by using local constraints de-—>| 042630(min) | 614690(min) | 645100(min) | 645900(min)
. ) d " 9 645710 644710 645140 645930
termined by the context information. In addition, the conver- —; 615790 644750 615150 615960

gence is fast as one can see, after the first iteration most ¢
the misclassification are removed. We have also implementgarable segmentation accuracy and the result produced by the
two other independent and popular algorithms, namely, the MHCM algorithm is most superior, though in terms of computa-
erated conditional mode (ICM) and the modified iterated cotional complexity the CBRL algorithm is the least. It should be
ditional mode (MICM) algorithms, so as to assess the compasticed that since in MICM algorithm an inhomogeneous con-
ative performance of the segmentation results among differdigiuration of the Markov random field is used, its superior per-
approaches [21], [22]. The only assumption being made by thédeemance is reasonable.

three methods is the Markovian property of the context imagesOn Model-Based Segmentation—Real Case Stiilythe
which can be well justified by the underlying cell oncologyeal case study, we used two information criteria (AIC and
and pathology. We have applied these three algorithms to tM®L) to determinek. Tables Il and IV shows the AIC and
same testing image and the corresponding classification errtBL values with different’’ and« of the FGGM model based

are presented in Table Il. The final percentage of classification one original mammogram. As it can be seen from Tables IlI
errors for Fig. 4(d) is 0.7935%. From this experimental compaand IV, although with differenty, all AIC and MDL values
ison, it can be concluded that three algorithms achieved coathieve the minimum whek = 8. It indicates that AIC and
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(@) (b)

Fig. 6. AIC and MDL curves with different number of regidi. (a) Result based on the original mammogram, the optiat 8. (b) Result based on the
enhanced mammogram, the optindal = 4.

MDL are relatively insensitive to the change of With this TABLE V

observation, we can decouple the relation betwa@and o~ COMPARISON OFSEGMANTATION ERRORRESULTING FROMNONCONTEXTUAL
and choose the appropriate value of one while fixing the value

of another. Fig. 6(a) and (b) are two examples of AIC and MD  Method | Soft Classification | Bayesian Classification | CBRL
curves with differenf{ and fixeda = 3.0. Fig. 6(a) is based on GRE Value 0.0067 0.4406 0.1578
the original mammogram and Fig. 6(b) is based on the enhanced

mammogram. As we can see in Fig. 6(a), both criteria achieved . . o
the minimum wherk = 8. It should be noticed that though nodion, which corresponding to labél, plus a criterion of closed

ground truth is available in this case, our extensive numeridgP'ated area, as the candidate region of suspicious masses. Ac-
experiments have shown a very consistent performance G9fding to the visual inspections by the radiologists, when we
the model selection procedure and all the conclusions wéteei — 1 instead ok, the results are over-segmented. For the

strongly supported by the previous independent work reportg@Se Of Using< + 1, the results are under-segmented. In order
by [14]. Fig. 6(b) indicates thakk = 4is the appropriate to quantify the performance differences between the different

choice for the mammogram enhanced by dual morphologiéﬂgme”tat!on methods, several groups ha\_/e sugg.esteq that the

operation. This is believed to be reasonable since the numBgpmentation results may be compared against radiologists’ out-

of regions decrease after background correction. lines of the IeS|qns_[3]. Though the proposed comparison mea-
We fixed K = 8, and changed the value affor estimating sures are quantitative, the performance measures are still quali-

the FGGM model parameters using the proposed EM algoritht ive, since the reference base (e.g., gold standard by the radi-
l%C(;gists) is qualitative, subjective, and imperfect. Therefore, in

with the original mammogram The GRE value between the hi3-; . . : .
s model-supported approach, in addition to the visual inspec-

togram and the estimated FGGM distribution was usedasam : . . L
}H)_ns by the radiologists, we have also introduced an objective

sure of the estimation bias. We found that GRE achieved a m . L
imum distance when the FGGM param 3.0 as shown in Mmeasure, the GRE between the histogram of the pixel images

Fig. 7. The similar result was shown when we applied the E%‘(”) and the FGGM of theegmen_tednag_epx,l(u) to assess

algorithm to the enhanced mammogram with= 4. This in- the perfarmance of the segmentation, defined by

dicated that the FGGM model might be better than the FNM Px (1)

model ¢ = 2.0) in modeling mammographic images when ~ CRE(Px(w)[|px,1(w)) = Z px(w) 10gm @)

the true statistical properties of mammograms are generally un- " ’

known, though the FNM has been most often chosen in mawperel is the context image estimated by the segmentation al-

previous work [15]. gorithm. Considering that the ergodic theorem is the most fun-
After the determination of all model parameters, every pixelamental principle in the detection and estimation theory, it is

of the image was labeled to a different region (from 1K) believed that when a good segmentation is achieved, the dis-

based on the CBRL algorithm. We then selected the brightesttarce between the (u) andpy 1(«) should be minimized and
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Fig. 7. Comparison of learning curves and histogram of the original mammogram with different 8. The optimak = 3.0. (a)a = 1.0, GRE= 0.0783.
(b) (@)x = 2.0, GRE= 0.0369. (C)x = 3.0, GRE= 0.0251. (d)x = 4.0, GRE= 0.0282.

(a) (b) (c) (d)

Fig. 8. Suspected mass segmentation results based on the original mammogram. (b) Result based on the enhanced miammégram,3.0. (c) and (d)
Results based on another original mammogram and its enhanced image.
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@ (b) (© (d)

Fig. 9. Examples of normal mixed fatty and glandular mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c)
Enhanced mammogram. (d) Result based on the enhanced mammbgtam,or = 3.0.

@ (b) © (d)

Fig. 10. Examples of normal dense mammogram. (a) Original mammogram. (b) Segmentation result based on the original mammogram. (c) Enhanced
mammogram. (d) Result based on the enhanced mammogram4, o = 3.0.

this measure links the image text and its sample averages. @gical enhanced mammograms. In addition, when the margins
experience has suggested that this post-segmentation measftineasses are ill defined, only parts of suspicious masses were
may be a suitable objective criterion for evaluating the qualigxtracted from the original mammograms. For the purpose of
of image segmentation in a fully unsupervised situation [22]esion site selection,” we believe that the sensitivity should be
[26]-[28]. Table V shows our evaluation data from three dithe sole criterion for the performance evaluation of the method.
ferent segmentation methods when applied to the real imageale have 181/186 versus 114/186. Our method is unsupervised
Performance of Combined Morphological Filtering andand automatic and does not involve any detection effort at this
Model-Based Segmentation using a Larger Databafbe moment. To our best knowledge, there is no objective criterion
proposed segmentation method was used to extract suspiciaveilable for the evaluation of image enhancement performance
mass regions from the 200 testing mammograms. Without éyefore a detection effort is involved. We only claimed that the
hancement, a total of 1142 potential mass regions were isolagthancement step is important and effective with respect to the
including 114 of the 186 true masses. With enhancement, a tqiatpose of “lesion site selection.”
of 3143 potential mass regions were extracted including 181 ofFig. 8 demonstrates some segmentation results based on the
the 186 true masses. The results demonstrated that more triginal and enhanced mammograms. We compared the seg-
masses were picked up after enhancement although more fatemtation results based on the enhanced mammoghkanm- (
cases were also included. The undetected areas mainly occu#eand« = 3.0) with those based on the original mammogram
at the lower intensity side of the shaded objects or obscured@y = 8, anda = 3.0) as shown in Fig. 8. Comparing the re-
fibroglandular tissues that, however, were extracted on morptsedts in Fig. 8(b) with those in Fig. 8(a), we can see that after
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Fig. 11. Comparison results of segmantation based on the enhanced mammograms. Black outlines denote the computer-segmented result. Wéntgeutlines
ther radiologist-segmanted results.

enhancement, a more accurate region was detected for the susss that lies in dense breast tissue. As shown in Fig. 8(c), the

pected mass which has ill-defined margin. Getting an accuratbole fibroglandular tissue area was segmented when based on
suspected region is a crucial issue since geometric featurestheeoriginal mammogram. After enhancement, the suspected re-

extracted based on suspected regions and these features aregienywas segmented exactly as shown in Fig. 8(d).

important for further true mass detection. In addition, we ob- We have also included the segmentation results on the normal

served that one suspected mass was missed in Fig. 8(a) but masnmograms. Fig. 9 demonstrate the segmentation results
detected in Fig. 8(b). As we have mentioned in Section |, noneledised on the original and enhanced mixed fatty and glandular

the suspected masses should be missed in the segmentation stammograms. Fig. 10 demonstrate the segmentation results
Fig. 8(c) and (d) demonstrate the segmentation of a suspedbaded on the original and enhanced dense mammograms. We
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would like to emphasize that the objective of this paper gatterns of interest, and thereby may facilitate the overall per-
to provide a segmentation technique which can enhance dadnance of mammographic CAD of breast cancer.

extract potential mass site from the background so that the
characterization of the related mass pattern can be accurately
extracted in terms of focused feature selection and analysis.
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it will be a plausible outcome since the accurate description
nonmass cases characterized by mass-like sites will benefit& ®
follow-on detection step where the performance of the cIassifig c
depends on an accurate separation of mass and nonmass ir%
featured spaces. The details will be described in [29].

For the purpose of evaluating the performance of the segmen-
tation method, we used both simulated studies and expert visual
inspection to validate the methods and results. The radiologist
has concluded that the lesion characteristics after the proposeH]
enhancement have been better displayed and all possible lesion
areas have been successfully identified. In addition to the vi-[2]
sual inspection, we have measured the overlap between the com-
puter-segmented and the radiologist segmented mass regions to
evaluate our method. Fig. 11 shows the comparison results of3]
segmentation based on the enhanced mammograms. Fig. 11 in-
cludes 60 benign and malignant mass patches which were cut)
from the whole mammograms after the segmentation. The white
outline was drawn by the radiologist while the black outline was (5]
produced by the computer and was superimposed upon the orig-
inal image. As we can see from Fig. 11, for most of cases, the
ratio of mutual overlap area of the radiologist segmented mas
region and the computer-segmented mass region to the radio?—
ogist segmented mass area is large than 50%. In addition, even
the poorest result picked the true lesion in the correct locationl”]
and depicted the characteristics of the mass reasonably. Itis im-
portant to understand that “lesion area segmentation” is not our
objective, so there is no “best” or “worst” segmentation results. !
Our objective is “lesion site selection” with a possible highest
sensitivity through a global unsupervised enhancement and sed¢]
mentation scheme.

(10]
V. CONCLUSION

In this paper, we propose a combined method of using mor-
phological operations, a FGGM modeling, and a CBRL to en{11]
hance and segment various breast tissue textures and suspicious
mass lesions from mammographic images. This phase is a crj2]
cial step in mass detection for an improved CAD. We empha-
sized the importance of model selection which includes the sg13
lection of the number of image regioik and the selection of
FGGM kernel shape controlled ky. The experimental results
indicate that the suspected masse sites selection can be aﬁec&e&
by different K and«.. We proposed the EM algorithm together
with the information theoretic criteria to determine the optimal
K anda. With optimal K andq, the segmentation results can be
significantly improved. We also showed that with the proposed
pattern-dependent enhancement algorithm using morphologic 1I
operations, the subtle masses can be segmented more accuraﬁeﬂ/
than those when the original image is used for extraction without
enhancement. To summarize, the morphological filtering enlt7]
hancement combined with the stochastic model-based segmen-
tation is an effective way to extract mammographic suspicious

q;ancer Center and |. Sesterhenn of the Armed Forces Institute
athology for their scientific input on the knowledge of cell
ology and pathology, and R. Shah MD, Director of Breast
%ing, BAMC for his evaluation of cases to our database.
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