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Performance Analysis for Adaptive Channel
Estimation Exploiting Cyclic Prefix in
Multicarrier Modulation Systems

Xiaowen WangMember, IEEEand K. J. Ray LiuFellow, IEEE

Abstract—Multicarrier modulation (MCM) has gained growing it causes 3-4-dB signal-to-noise ratio (SNR) loss compared with
interest in high-data-rate communications in both wire and coherent demodulation if channel information is known.
wireless environments. The channel estimation is a crucial aspect In applications such as xDSL, some training processes are
in MCM systems. In this paper, we first present a novel adaptive f dt timate the ch ' | bef th icati
channel estimation algorithm exploiting the channel information per ormed 10 €S Im.a eihec anng e ‘?fe € communication
contained in the cyclic prefix of the MCM system. In simulation, IS S€t up. Then, this channel estimate is used throughout the
we show that this algorithm outperforms the existing scheme. entire communication [3]. If the channel changes, retraining
Then we theoretically analyze the performance of the adaptive is required to track the variation. In wireless applications, the
algorithm considering both channel noise and decision error. We  panne| variation is assumed continuous, then pilot symbols are
prove that the algorithm is guaranteed to converge with proper used to catch the channel variation [8]. However, in order to es-
loading. Computer simulation shows that our analytical results < : i h
are quite close to the simulation. timate the channel more efficiently, people are trying to estimate
the channel information directly from the transmitted data.

We propose an adaptive channel estimation algorithm by ex-
ploiting the cyclic prefix in the MCM system [9], [10]. The
cyclic prefix used in MCM systems is originally designed to
. INTRODUCTION reduce ISI. However, it is nothing but a repeated part of the

ULTICARRIER modulation (MCM) is now considered transmit data which can be used for channel estimation. Based
M an effective technique for both wire and wireless conf2" this observation, we propose a block recursive least-square
munications [1]. MCM partitions the entire bandwidth into seWRLS) algorithm to estimate the channel, adaptively exploiting
eral parallel subchannels by dividing the transmit data into sé{2€ information in cyclic prefix. The algorithm uses decision di-
eral parallel low-bit-rate data streams to modulate the carriéted samples, and hence, no extra training is needed. The sim-
corresponding to those subchannels. It is a scheme compati#fdion shows that by using the proposed adaptive algorithm, the
to the famous water-filling theorem [3] and provides an OFj\{ICM system performs more robustly than the existing system
timal way for channel capacity usage by adjusting the bit raféth adaptive equalization [3]. In this paper, we will present the
and transmit power according to the conditions of subchanne?§laptive channel estimation algorithm and analyze the perfor-
MCM is also a block-oriented modulation scheme, which réb@nce of it theoretically. _
sults in a relative longer symbol duration and produces greate® 10t of research has been done on the performance analysis
immunity to impulse noise and intersymbol interference (ISI f the decision-directed estimation and equalization schemes
Because of these advantages, MCM is considered a promisihgl: [13]-[19], [21]. In [21], the system identification problem
technique in digital subscriber line (xDSL), digital video/audidith noisy input is visited. In [17]-{19], the error propagation
broadcasting, and wireless communications [1], [4]. through the fixed decision feedback equalizer is analyzed.
The channel information plays an important role in the infowever, in our algorithm, the linear equalizer is used and
plementation of MCM systems. It is essential to bit and pow@dapted using the decision-directed samples. Blind equal-
allocations and signal detections. Without perfect knowleddgtion that does not need extra training is studied for linear
of channel parameters, the MCM system either cannot wdpRualizer adaptation in [11], [13]-{15], and for decision feed-
or may incur significant performance loss. Some techniqud¥ck equalizer adaptation in [16]. In such blind schemes, the
such as differential phase-shift keying (PSK) modulation, c&fiannel inverse is estimated from the channel output and the
be used to eliminate the need for channel information. HowevEgcision-directed samples are used as the desired output of the
channel inverse filter. The understanding of these algorithms
is that due to the nonlinearity of the decision-directed scheme,
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x| n (IDFT) onXy, = [Xox X1k -+ - Xim—1,1] Where the lasin/2
xwis__| /L samples are just the conjugates of the first2 samples, and
e ] P e ® therefore, the modulated time domain signal is real, which is
— S/P : IFFT :
1 m—1
Xm-1k Xm-lk s 2rld
Tip = —— X el m 1=0,---,m—1. 1
l,k \/% ; l,k ? ? ( )
. A . .
The transmitted energy; = E[||X; ||*] and bit rate for dif-
e Channel #i__ ferent subchannels can be allocated according to the channel
o . — i condition.
P Yo onecap|e > | A cyclic prefix 27 = [z_, - 2_14]7 is constructed
L | TP 5 [Poalineg f B {obyz_;x = Tm_ik, ¢ = 1,---,v and transmitted beforey.
ymix Yo ; K X i At the receiver, the prefix pary,(cf ) = Wev ke y—16]T
""""""""""""""""""""""""""""" is discarded. The demodulation is performed only on
Fig. 1. MCM system with cyclic prefix and adaptive channel estimation. Y& = [Yok Y1k -** Ym—14]L Dy the DFT operation. The

demodulated data ¥, = [Yo.r Y1,k -+ Yim—1,]" With
the channel output is treated as the desired filter output. The de- me1
cision error in the _blind equalization _algorithms only appears_in Y, = 1 Z yl_keﬂn’;“’ 7 i=0,--,m—1. (2)
the cross-correlation vector of the Wiener—Hopf equation, while vm 0

in our adaptive estimation algorithm, it appears in both data cor- ) S
relation matrix and cross-correlation vector. In this paper, we e channelis usually modeled as a finite impulse response

are trying to consider both the effect of channel noise and detf/R) filter with v + 1 real taps. The impulse response of the
sion error. The problem becomes complicated because the g&@nnel ish = [ho, by, -+, hy]*. The channel noise .,
cision error and the channel estimation error affect each otfer —¢--*» —1,0,---,m — 1 is assumed to be independent
through a closed feedback loop constituted by the signal detisientically d|str|butgd (i.i.d.) real Gauss_|an d_|str|but|on with
tion, channel estimation, and equalization. We try to separd@© mean and variane€. Then the relationship between the
the analysis into two parts. First, we analyze the impact of de€f?annel input and output can be expressed as

sion error on the channel estimation. Then, we study the impact (v
of estimation error on the signal detection and try to derive the > hiwicig + i, 1=0,---,m—1
symbol error rate (SER) based on this analysis. Finally, a recur- IZO,
sive mapping of SER is constructed using the results of the these vf hTi1x
two parts. The convergence of this recursive mapping is considi-k = = ©)
ered to draw our final conclusions. + i Pyt ot
The rest of the paper is organized in the following way. First, l=vtit1 ’
we will present the MCM system and the adaptive channel esti- TNk, t=—v,---,—L

mation algorithm. Then we will do a performance analysis fol- From (3), we can see that there is no interference from the

Iowmg the outline given aboye. Because some approxmatlor:?lr%evious blocks in the received sigiyal. It shows that the cyclic
applied in the analysis, we will give the computer simulation ex-

. - : - refix reduces the ISI betweégy,'s and hence, the subchannels
amples to verify the vall_dlty of the theoretical analysis. Flnall)gan be viewed as independent with each other, i.e.,
we present our conclusions.

Yie =X, H; + N, (4)
[I. MCM SYSTEM AND ADAPTIVE CHANNEL o
ESTIMATION ALGORITHM where H; = >0 hye—3(@li)/m) and

- 1 =i (@rl)/m) | i
In this section, we will first present our adaptive channel estﬁyﬁ”; u_bcr(ulaﬁ \r{eml)v%lllgﬁ i:lé]io with zero :etzr? gr?cljs\?a(r)ifa:?cee
mation scheme using cyclic prefix and then compare it with tHE ) ro
existing adaptive equalization scheme in [3]. We will show ir‘rﬁmd independent with that of other subchannels.
' For the independent subchannel of (4), only a one-tap equal-

imulation that th h f h isti ) Lo :
simulation that the proposed scheme outperforms the emstt&ngi is needed to get the estimation tf , from Y, i.e.,

scheme.
A. MCM System Using Cyclic Prefix H Xige =Yi- Wi ©)
where
Fig. 1 shows a MCM system using cyclic prefix with adaptive 1
channel estimation. The system hag2 complex parallel sub- Wi = H (6)

channels. The input data can first be coded and interleaved and R

then are buffered to blocks. Each block of data is then dividedThen the decision is made upd¥ ., resulting inX; , =
intom /2 bit streams and mapped to some complex constellatiq(nf(i;k), whereg(-) is some type of quantization function. Then
points, X; x, i = 0,---,m/2 — 1 at blockk. The modulation the decoding and deinterleaving are done based on if any

is implemented byn-point inverse discrete Fourier transfornmof coding and interleaving are used.
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B. Adaptive Channel Estimation Algorithm is done according td{; ’s with the following requirement on
In the MCM system, usually the received cyclic prefixSER:

part y,if) is discarded. However, it is found that if all the d;||Hi ol| .
prefix parts concatenate together as a pair of sequencéjsﬂ(o) = P:(0) = 4Q< \/50 ) ' 1=0,---,m—1
{ng)} = { T k1T g 1Ty T_1 -} and (14)
{?/z(f)} = { Yokt Yrk 1Yok Y1k}, the WhereP.;(0) is the initial SER andi; is the minimum dis-
relationship between these two satisfies [9] tance between the constellation points of itte subchannel,
respectivelyP,(0) is some preset required value of SER to con-
y§f> = :L‘Ef) * h; +n;. (7) trol the decision error. The Q-function is defined a&) =

[2(1/V2r)e*"/2dx. Then
Based on this equation, a block RLS algorithm can be adopted
to adaptively estimate the channel by directly solving (7). V2o __, (P.(0)
First, the estimated transmitted cyclic prefix is obtained by di = | H; o] Q < 4 )
performing IDFT on the decision-directed samglgy, i

(15)

This optimization problem is subjected to the energy con-

1 ™= straint, i.e.,
Tik = —F— Xjrelm P =—v,--,—1 8
120 A 2 1
= E: S Ellzisl] = ~ Y Ti<C (16)
The estimated transmitted cyclic prefix can also be constructed et

from the decoding data. However, in this paper, we only use tWﬁereU is the set of all the used subchannels.
decision-directed ones. For QAM constellation

Then the estimated correlation matrix and the cross-

i M, —1
correlation vector are formed as I, — ,6 d? (17)

®(k) =p1®(k—1)+ Zﬂlz_lﬁl(k)ﬁf{(k) (9)  with M; as the number of constellation points used in ithe

=1 subchannels.
_ _ 1 As the loading is done, the data are transmitted according to
a(k) = (k= 1) + >y w(k)y-10 (19 the bit and energy allocated to each subchannel. The receiver
=1 then performs the following adaptive channel estimation
Whereﬁl(k) = [j—l,k Tk Tl k-1 :i‘_hk_l]T is the algorithm-
estimated data vector; andp» are forgetting factors across
blocks and within blocks, respectively. These two factors shouldput: y,(f ) and Y.

be both equal to or less than one. Known parameters: I; and o?.
The channel estimation then is obtained as Selecting parameters: p1 and  po.
. B Initialization: k = 0, an initial training
h(k) = @' (k)z(k) (11)  process is used to initialize h(0) and
®(0).

whereh(k) = [ho s hag -+ ho]T. o
Here we also would like to define the ideal data correlatio%ompuratlon' k=123
matrix and the cross-correlation vector with perfect knowledge . R omitjm n
of the transmitted data for the future discussion. The ideal dajfg fgia’“—l - ZL=0 hlskjle Wig—1 =1/H; k1.

correlation matrix is Xix =YixtWigr_1,1=0,---m— 1.

3) Tk = (1//m) Z£61Q(Xz,k)€j2””/m, i _
k v
(k) =Y ub S b w(k)uf (k) 12) g o m v e NeH
_1'[ ! = Ha T ! 4) ®(k) = me(k—1)+ 2151 pyw(k)uy’ (k),
"= = C2(k) = Z(k — 1) + 30 phBi—1 (k)y—ik-
and the ideal cross-correlation vector is 5) h(k) = ®~(k)z(k).
k . Here steps 4 and 5 can be replaced by existing fast RLS
z(k) = Z k= Zulg_lm(k')y_z,k (13) algorithms [20].
= =t C. Comparison With Existing Adaptive Equalization Scheme
wherew (k) = [z vk #-1k-1" T-1k-1]7 iSthe  nthe MCM system, the subchannels are considered indepen-
ideal data vector. dent. An adaptive equalization scheme for single-channel sys-

Clearly, the above algorithm is a decision-directed schemgms then can be applied for each subchannel. As described in

In order to start the algorithm, we need to do some initializg3], such an adaptive equalization scheme is shown in Fig. 2.
tion. At initialization, we send an initial training to get the ini-The equalizer coefficient is updated by

tial channel responsH; o. Using a quadrature amplitude mod- B K
ulation (QAM) constellation for all subchannels, the loading Wik =Wik—1+m(Xix — Xir)Yik. (18)
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/ the cyclic prefix. In the following sections, we will discuss the
) performance analysis problem of the proposed adaptive channel
Yik ))/ Rix Xik estimation algorithm and try to explain the results.
ik

I1l. PERFORMANCE ANALYSIS WITH EXISTENCE OF

+ @ - DECISION ERROR

From this section, we begin the analysis of the proposed

channel estimation algorithm. First, we study the impact of
Fig. 2. i izati . decision error on the channel estimation. As described in
Section II-B, the decision-directed samples are used as the
estimated transmitted cyclic prefix part. If we can get the
perfect samples of the cyclic prefix, then we know from the
literature [20] that the algorithm will converge to an unbiased
estimation linearly, and the convergence rate is determined by
the eigenvalue spread of the data correlation matrix. However,
the detected signals are used as the estimation of the transmitted
cyclic prefix and the decision error would affect the channel
estimation, which is studied next. The channel estimation with
both noise and decision error is analyzed in this section. Both
forgetting factorg.; andus are one in the following analysis.

Average SER

A. Definitions and Assumptions

::1il — Adaptive channel estimation (prefix)
— ~ Existing adaptive equalization 3]

| 7_" Adaptive channe! estimation (datasprefix) [ The adaptive channel estimation algorithm includes two pro-
Idoal channel information cesses. One is the signal detection process, in which the esti-
) S e mated data samples are obtained. The other is the channel es-
Yoo w w w w w w i W 20 20 timation process, in which the channel is estimated using the
o estimated data. To analyze the impacts between the two pro-
Fig. 3. SER iteration compared with existing adaptive equalizatios: 64, cesses, we need to define the decision error and estimation error
0% = 0.01, P.(0) = 107%, p = 0.01, 4, = 0.7, andp = 1). first. The signal detection in MCM is done in the frequency do-
main, while the channel estimation is done in the time domain.
In [11] and [13], the convergence of such an adaptive schefri@nce, the decision error and the estimation error are defined in
is proved under the condition that the channel noise is smlfith time and frequency domains.
and no decision error exists. However, in Fig. 3, our simulation First, define frequency-domain decision error as
shows that such a system fails to follow the channel variation A
while our adaptive channel estimation works. nik=Xir — Xir, 1=0,1,---;m—1  (20)
The MCM system used in the simulation has 256
complex subchannels. The average transmit enerﬂﬁ‘ereﬁz E'S are independent with differemindk. The energy
is one. Initially, the channel transfer function used isf7, o2, (k)=E[|lnix]2], is bounded by(2y/M; — 1)%d2) /4
H(D) = (0.02+0.16D?)/(1—1.5D +0.54D?) and the initial for QAM constellation.
loading is done according to it. At the 20th block, the channel The time-domain decision error is given by
is changed tdf (D) = (0.05+ 0.27D?)/(1 — 1.4D + 0.5D?).

The figure shows the averaged SER, which is defined as €ik = Ei k — Tik
27\-!7,
E e I t=—v,---,—1. (21)
E P.i(k 19 vin
|U| (29) leU

€U . .
Then, the estimated data vector can be written as

whereP, ;(k) is the SER of théth subchannel of theth block.

The step size used in (18) is= 0.01 while the forgetting fac-

tors used in the proposed adaptive channel estimation algor'tmeree (k) =
arep; = 0.7 andus = 1. Itis clear that the proposed adaptive
channel estimation algorithm can follow such a channel varlg
tion, whereas the existing scheme fails to do so.

In the figure, we also show the result of the proposed adap-
tive algorithm using the data payt. together with the cyclic
prefix y{ to form the estimated correlation matrii(k) and The frequency-domain estimation error is defined as
cross-correlation vectar(k). It is shown in the figure that the
algorithm converges much slower than the one that only uses AH; = Hlk — H;, 1=0,---,m—1. (24)

u(k) = w(k) + e(k) (22)
le—ik  e—p ket k—1 €1 k1)
The time-domain estimation erretk) = [eo xe1,k - - €0 1) T
given by

€k :}Ali,k_hi-/ 1 =0,---,v. (23)
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The energy of the frequency-domain estimation error is formed by the cyclic prefix part contains the data samples from
two consecutive blocks that are independent of each other. For
o (k) 2 E[IlAH; «]%]. (25) this reason, the estimated correlation maigk) formed by

the cyclic prefix part is better conditioned than the one formed
In order to make the analysis problem tractable, we haveg the data part. This is the other reason that contributes to the
make the following three assumptions. result of Fig. 3.
Assumption 1 (Independence Assumptiohire cyclic prefix
z; ., channel noise, ,, and the decision erref, ;. are indepen- B. Convergence Analysis With Decision Error

dent of each other for = —v,---, —1. _ Now we will try to analyze the convergence of the estimation
Assumption 2 (Near-Stationary Assumptiods the system 5|gorithm. To do that, we need some approximations on the es-

is near the equilibrium, we made the following assumptiongnation error. Substituting (22) into (9) results in
about the decision error.

Y &(k) = ®(k) + AD(k) (30)
Eles(k)ef (k)] = R (k) 20) i
k v
and assum®. (k) does not change much with so that AB(k) = Z Z ei(n)ut! (n) + w(n)e (n)
k v n=11=1
E [Z > ei(n)ef! (n)] ~ kvRe(k). (27) +ei(n)ef! (n). (31)
n=1 =1 Then,
k v
Assumption 3 (Gaussian Distribution Assumptiolefine 2(k) — h
E[w,(k)uf (k)] = R. We assume that the input data vector a(k) ; it w(mu (b +wlmnZ,,
w; (k) is generated from the ¢ 1)-dimensional Gaussian distri- o H
bution //(0, R) independently. We also assume that the time- +en)ur (n)h+e(n)n,,
domain decision erroe; (k) is also Gaussian distributed. It is =®(k)h + (k) (32)
proved in [20, App. J] that with
k v
E[® (k)] = _ 1 Rj (28) e(k) =Y > w(n)n,, +e(n)n’,,
kv—v—2 n=11=1
E[‘I>_2(]€)] — 1 R_2. (29) - ul(n)efl(n)h - el(n)efl(n)h (33)

(kv—v—=2)(kv—v—4)
) ) Thus, the estimation error can be written as
We have the following remarks about the above assumptions.

1) Ignoring the difference of decision error of different con- e(k) = fl(k) —h =& (k)e(k). (34)
stellation points, the decision erref ;’s are independent of
input datar; ,’s and only depend on the noisg’s inside the ~ BecauseX;; ;, still has values in the same constellation as that
data block part, i.e, = 0,1,---,m — 1. ¢; ;’s are independent of X; ., ®(k) is generally full rank if both¥; ;, ande; , are gen-
of noise samples, ;s in the cyclic prefix part. However, if we erated randomly. Then the above estimation error is bounded,
also use the data part to do the channel estimation, the decisice the decision error is always bounded. Therefore, even if
error is correlated with the noise samples inside the data pédite system cannot converge to the desired point, it would be
which not only makes the analysis in the following section difsounded inside a certain region. Now we are going to show
ficult, but also contributes to the slow convergence in Fig. 3. that if the decision error is small enough, the estimation error
2) The Gaussian distribution assumption is generally not trig.going to converge to some steady point.

The correlation of the time-domain data is Suppose® (k) "L A® (k) has very small eigenvalues which
L are all much less than one, then
% 1 — 22ml(ig —ia)
E[wi17k1xi27k2] = E IZ; Flé(k‘l — ]{;2)6] =y . @71 ~ 11)71. (35)

Only when the transmitted data in all the subchannels haV8€"; We have the following approximation for the estimation

same energyR is not dependent of and according to the €O

central limit theorem,u;(k) can be approximated by the B~ &L (k) ek 36
Gaussian distribution. However, if we do the loading, the e(k) (R)e(k)- (36)
time-domain data becomes correlated. For example, for theen, we have the following statement about the dynamic be-
channel used in Section II-C, the transmitted energy is focusiedvior of the channel estimation.

in the first 100 subchannels. In this case, the correlation of theTheorem 1: The mean value of the estimation error satisfies
time-domain data is very large. If we use the data part to form

the estimated correlation matri@(k), the matrix could be Ele(k)] :_—]“}R*Rg(k;)h (37)
very ill-conditioned because the difference betwag(k)’s for ) ]‘“il_ v—2
different!’s is very small. On the other hand, the data vector Jim Ele(k)] =R Rch. (38)
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The mean squared channel estimation erfef/k)s(k)] con-  Using the results of the previous sectidn; ,, can be viewed

verges linearly to a nonzero steady poinkas» oo, i.e, as the linear combination @f;(k) andn; ;. Then, we can say
that AH; j, is Guassian distributed based on the Gaussian dis-
Jim E[e” (k)e(k)] = h"R.R™°R.h. (39) tribution assumption o#;(k) andn, .
Theorem 2:Under the independence assumption and
Define the estimation error correlation matrix as ignoring higher order error terms such afj|&H; ,||*] and
o?E[||AH; ,||*], the channel estimation error propagates
K(k) = E[e(k)e" (k)]. (40) to the decision point as an additional Gaussian noise term

conditioning on the knowledge of the transmitted signal. The
conditioned probabilityy(¢; x| X;) of the residual noise at the
ith subchannel then follow& (6. (X;), px(X;)), where

Then, the theorem can be proved by calculating

Ele™ (k)e(k)] = tr[K(k)].

E[AH, ,_
The detail of the proof is shown in Appendix I. Or(Xi) ~ — %X’i (46)
The constant in (39) is just the square of (38). The theorem !
(39) 15 a (38) ou(X)) MW (0%, (DX + 02 (@47)

states that the adaptive algorithm will converges to this sta-

tionary bias linearly ag — oo. _ Using the distribution of the residual noigg; conditioned
When the decision error is small enough to be ignored, thg the transmitted signal;, we can calculate the symbol error
mean squared estimation error can be approximated as  probability when transmitted signal ;. The SER then is ob-
0% + hER,h tained by taking expectation over the signal constellations.

tr[K (k)] Nﬁtr[frl]
vmume V. RECURSIVEMAPPING OFSER
_02+hHREhZi (41) . . . .
T Tho—v_2 2 X\ In this section, we are going to study the SER at the decision

point before decoding. The decision error can be calculated once
where);’s are the eigenvalues &. the SER is known. Then the decision error propagates to the

From the literature about the convergence of the RLS ak‘:]g)hannel estimation, and the estimation error affects the residual
rithm [20], we know that the convergence of the estimation dl%iS€. Which determines SER. ,
gorithm is determined in proportion to the inverse of the smallestSUPPOSE the SER. ;(k)'s are known. Assume the detection
eigenvalue of the data correlation matrix. (41) shows this alsoq8ly mls_takes the detected _S|_gnal to the neighbor of the trans-
the case when decision error exists. lll-conditioned data ingtit€d signal. Then, the decision erief, (k) as

may lead to a slower convergence rate.
y g o2 (k) ~ Po i(k)d?. (48)
IV. PERFORMANCE ANALYSIS WITH EXISTENCE OF As stated in the last section, the residual noise at the decision
ESTIMATION ERROR point is a Gaussian noise with mean&f(X;) and variance

In this section, we analyze how the estimation error affeces (X:). Then the SER can be calculated as
the residual noise at decision point which determines the SER

and hence, the decision error. Pe,i(k) =Ex.ec; [Pe#\Xv (k)]
We define the residual noise at the decision point as e [Q <d7; — 2|%{9k(Xi)}|>
A V2pr(X:)
§ie=Xik — Xik- (42) di + 2|R{0(X,)}]
N +Q \/5 (X)
From Section II-A X ;. is the output of the equalizer. In prac- P £k9 ZX
tical systems, the equalizer is obtained from the channel estima- +Q ( i = 2[3{0x( i>}|>
tion. The equalizer now is V2pi(X5)
d; + 2|3{0(X;
Wik = b (43) V2pr(X5)
i,k
) o whereP., ; x, (k) is the symbol error probability of wheX; is
Then, the residual noise is transmittedC; is the constellation of théth subchannel.
ik =Win1Yir — Xig (44) A. Transient Analysis

In this section, we study the case when the adaptive al-
gorithm just started and the estimation error is relatively
large. In this case, we can see from (49) that if the bias
of channel estimation is so large thaR{6.(X;)}| or
|${0:(X;)}| is much larger compared td;, the SER is

Due to the loading algorithm, we can assufjié;||?'s for
1 € U is large enough for the following approximation:

A 1 AHz,k

1in this case, the dominate term in (67)K5 (k) andK (k). 2Refer to Appendix I for detail derivation.
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dominated by Q((d; — 2|R{6:(X:)})/(V2pr(X;))) or B. Local Convergence
Q((di = 2|3{61(X:)})/(V2pr(X3))). In this case, the SER | this section, we will assume that the system is near the

is bounded by equilibrium, and the SER is small enough to ignore the offset
caused by, (X;). Then the SER can be approximated by

d; — 2||0k(X;
P <o (S 20| P~ ) (55)
Pk 7 e, ~ N .
V2pr(Xi)
Using the results oTheorem 1we have Since the decision error is small, approximate the estimation
error as
(k—1)v||X;]| wHR'w; o2 +hfR.(k)h_ _,
0p( X)) = : Kk ——""R™". 56
198 (Xl (k—1v—v—-2 m (k) kv—v—2 (56)
X Z 021 | HywHw| (50) For the frequency domain estimation error, we have
leUu v
< (k= Do*|Xi]| wl/R'w; AH; ) = ZEI,keij%-
“(k-lv—v—-2 m 1=0
% Z 072” | 5| (51) Hence, the frequency domain estimation error can be approxi-
PP mated as
2+ hfR.(k)h
cr%li(k)zglj—'(z)wfIRflwi
wherew,=[1e- e/ ... = Cmn )" 2L LS PR
As stated in Section IlI-B, the estimation error is bounded. _7 T m zaeu fel Ul wHR lw,;.(57)
Then, we definep = mazx, xpx(X;). The SER bound kv —v—2
becomes The SER then can be derived as
P..(k)=F
P. (k) < B.i(k) =
di— (A 711):2“;( ill Wi Hr— Z oy l)iZHHzH o1 & A
£loo ) = 2 < ( )HH il . (58)
Vee W R wiIX 12| 297 ( [EAR
kv—v—2 ZHHZ ”2 el(" 1)+1

Definer(k — 1) = e Boa(k - 1)@2|[ i, then Define a weighted average SER as

A 1 H;
Z“ HQH (k). (59)
U DX W R e = [ Hi ol
(k—1)v—v—2 m
E|2Q . . _
;} { ( V2p )] The iteration ofp(k) is
H;|?
x| Hi| = ¢(r(kb —1)). (53) LA
; [1Hioll?
We now form a recursive mapping= ¢(r). The condition for Q1 ( Pe(0) ) H
this recursive mapping to converge is thatr)| < 1, i.e., xE14Q \/WHRAW .12 [ (42 ]
St 12 (£ -1
k-1 60
ol — |5 V2 - D*wl R w; ST >
|9’ (r)| = Z (k—1)v—v—2)mp The condition for this iteration to converge|if (p)| < 1.
icU It is easy to calculate this derivative, and the condi-
XE[e 7 Dy (r)]| X; ||} <1 (54) tion becomes
4
@)= s
wherev(r) = (d; — 2(\(/(&— D2 X))/ (k= 1)v — v —2)) (kv —v = 2)m\/2m 2
(wiRw:)/(m)r)/ (V2p). y E[ HR=Lwi | X, |2e= 52 2 (p)|<1 (61
As the adaptive algorithm begins, the off§ét (X;)|| caused ;j willXille g: (<1 (61)
by the estimation error dominates the SER. In this case, (J¢\n
is the sufficient condition to make the algorithm converge to an Z1(P.(0)\ |H:|
equilibrium. If this condition is satisfied and the SER is bounded g:(p) = Q ( 4 ) 1H:oll .(62)

to a small range thdf,(X;)|| can be ignored, we can further HR—w, || X, |2 [1 Lo ( 0)> }+1
analyze the convergence property of the system. kv—v—2
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Now let us consider the functiarm ¢")/2¢3_ It is easytofind Q(-) is a convex function, applying Jensen’s inequality to (60)
out that this function has one maxima 8. Then|f’(p)| is gives us

bounded by
: p(k)> LE|4Q HHiH22
v 36v/3e2 B PR { <1_ T ol
7wl (kv —v —2)mV2r ZW?R I : (L) Azl
‘€v @ () Tin
y x 7 . : (65)
= (k 36\/§e)~ \/— Z WZHR_IWZ‘F,'. (63) \/w [1+2Q*2(PET(O));';(I»»71)] +1
U — v —2)my 2T ¢
€U

The equality is valid if(||H;||?)/(||H:ol||*) is constant. This

The boundness qff’(p)| implies that means that the initial channel response, on which loading is
. , based, should have the same shape as that of the ideal channel
,}H{}Jf (P)| < 1. (64) response in order to make the system converge faster. It is

) ) ) ] ) also noticed that the right-hand side of the inequality becomes
This means that the adaptive channel estimation algorithm will, 5 ey when(|| H;|2)/||H;.o||?) becomes larger. This means
converge as the iteration goes on. that we can add more gap in loading to make the system con-
verge faster.

The other factor that contributes to the nice convergence prop-

In this section, we will discuss some factors that affect therty of the proposed algorithm is that the convergence depends
convergence. on the overall performance of the system. As shown in (60), the

First of all, in both (54) and (61)w/R~'w; plays an im- SER iteration for any individual subchannel depends on the per-
portant role. It is required that/R~'w; be small in order to formance of the whole systeptk — 1). In contrast, the existing

C. Discussions

get a faster convergence R is a diagonal matrix, then adaptive equalization scheme in Section II-C treats all the sub-
1 channels independently and applies the same scheme for each
wiAR lw,; = Z — subchannel. Therefore, the convergence only depends on the

i Ai channel variation and performance of individual subchannel. In

where)\; is the eigenvalue oR.. This again indicates the con-f[hIS case, if the performan_ce of a specnjc subchanr_lel goes bad,
may never recover again. However, in our algorithm, it can

clusion we have stated in Section Ill already that the input djﬁa

need to be well-conditioned to guarantee a fast convergenc Sfrecovered if the overall system still performs well. The key

the system. Because the loading algorithm used in this paperpé?lnt here is that the independence of subchannels is an advan-

ways tries to load the data compatible to the channel spectrL}ﬁ‘g.e for_ the signal detection but a d|sadvantage_ for the channel
the time-domain data becomes correlated, which may lead tSshma\tlon, because the channel responses of different subchan-

large condition number of the data correlation matrix, especiafl13?6}S are aciually correlated.

in the case where the whole block of the data is fed back. Such
an ill-conditioned correlation matrix significantly slows down
the convergence of the algorithm. Since we use some approximations in the previous analysis,
It is also noticed that there is no noise variance term in (63jomputer simulation is done to verify the analysis results. The
However, it does not mean the noise does not affect the SERMEM system adopted in this section has 256 complex subchan-
eration. It has its impact through the loading, since the differenéls and an average transmit energy of one in all the simulations.
noise level results in different constellations. Then the expec-Example 1: By this example, we show how a stationary deci-
tation in (63) is taken over different constellations. This masion error affects the channel estimation. In order to do that, we
cause different results. Moreover, if we fix the transmit energyse the ideal channel information in the equalizer, i.e., no esti-
and the SER requirement, increasing the channel noise may |le@ation error propagates to decision point. The transfer function
some subchannels to become unused, which will significantiged in this example i (D) = (0.02+40.16D%)/(1—-1.5D +
affect the correlation of the time-domain data, and then affegt4D?).
the convergence of the system. The only way to combat this pheFig. 4(a) and (b) shows the mean-squared channel esti-
nomena is to increase the transmit power, which again becomestion error 1/v E[¢¥ (k)e(k)] and mean-squared residual
a tradeoff between performance and cost. noise 1/m ;. 0¢ (k) with and without decision error,
Further analysis off(p)| indicates that the iteration con-respectively. It can be seen that there is a constant difference
verges faster as~(9: (7))/2g3 () goes smaller. Such a functionbetween the two curves of estimation error which corresponds
may go small along two directions, eitheis small or large. to the bias of the channel estimation caused by the decision
However, whery;(p) — 0, it will make the SER go to one, error. This bias also propagates to the decision point which is
which means the system is collapsed. Hengé&7) — 0is a shown in Fig. 4(b).
trivial solution for the equilibrium. In order to make the system Example 2: The transfer function of the channel used in this
converge faster, we should lg{(5) be as large as possible. Itexample isH(D) = 1/(1 — 0.3D). We show the SER itera-
is easy to see that(p) goes larger whep is small. According tion in (a) and the mean-squared channel estimation error in (b).
to the definition,p is weighted by the ratio of ideal channelTwo cases of loading are simulated in Fig. 5(a). In one case, the
response|H;||? over the initial channel respondé; ,. Since loading is done according to the flat channel response. In the

VI. COMPUTER SIMULATION
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Fig. 4. (a) Mean-squared esimation error an residual noise at the decision . .
point (v = 32, j1, = p = 1,02 = 0.01, andP.(0) = 10-2). Fig. 5. (a) SER and (b) mean-squared error iteratios= (32, 11 = po = 1,

o? = 0.01, and P.(0) = 10~3).

other case, the loading is done according to the ideal Chanﬂ% channel information in such a training sequence. In our sim-

responsé! (D). In Fig. 5(b), the case of ideal loading is Showrbl?tion, the proposed algorithm performs more robustly than the

with the standard dew_atlon of the mean- squared error. I_n b(g isting adaptive equalization scheme [3] without sending extra
(a) and (b), our analytical results are quite close to the S'mut?éining
tions. The figure also verifies that the system converges faste;l.hen we investigate the performance analysis of the adaptive

vyhen loading is dpne accordlqg to .the ideal channel 'nfprmt@ﬁannel estimation algorithm. We first prove that the existence
tion. It CONVETges in at_)out .10 |ter<_':1t|ons whe_n ideal loading 5% decision error results in a biased channel estimation and the
don_e, andin quUt 20 iterations with flat loading. Furthermorg|gorithm converges with the same rate as that without decision
_the ideal Ioad_lng has better overall performance than the NQ¥or. Then we analyze the effect of the channel estimation error
ideal flat loading. on the system performance and prove that the channel estima-
tion error appears at the decision point as an additional noise.
VII. CONCLUSION Finally, we derive a recur;ive mapping of SER using the above
conclusions. We first derive the SER bound as the channel es-
In this paper, we first present an adaptive channel estintanation error is large. Then we consider local convergence of
tion algorithm for MCM systems using the cyclic prefix. Wethe recursive mapping and find that the system will be guaran-
observed that the cyclic prefix originally used to reduce ISI iged to converge as the iteration goes on. The convergence rate
actually a source of channel information. A block RLS algas determined by the eigenvalues of the data correlation matrix,
rithm using decision-directed samples then is applied to explaihich is affected by the channel noise and loading algorithm.
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In our analysis, we consider both the channel noise and the dksing the near stationary and Gaussian input assumptions, it can
cision error in signal detection, which is different from most dpe shown that
the analysis of such a decision-directed algorithm in the existing
literature. Thus, the analysis presented in this paper is closer ) .
to the practical environment. However, it should be noted that' (Ko ()] = tr {U E [‘I’ (k)]}
some assumptions are made in the analysis. Careful evaluation >

> nthe SR — (68)
of the validity of those assumptions is necessary before the anal- kv—v—2

ysis results can be used in the MCM system design.
tr [Ka(k)] =0’E ZZel n) Y@ (k)ey(n)

n=1 [=1
APPENDIX | _ o?
(kv —v—2)(kv —v —4)
kv
PROOF OFTHEOREM1 « tr {E [R—l Z Z el(n)ef{(n)R_ll }
Proof: Taking expectation of (36), we have n=11=1
_ o’kv
. (kv —v—2)(kv —v —4)
E [6(/{3)] ~E [@ (k)G(k)] % tr [R_lRe(k)R_l] (69)
k v
_ —1 * * k v
=E|[@71(k) DD w(n)nly, +ei(n)nly, tr[Ka(k)] =tr {E @7 (k) S0 3 win)
n=1 =1 el =1
—w(n)ef (n)h — el(n)elH(n)h] . xuf! (n)hf R, (k)h® (k)] }
H
_ _ _ _b7R(bh, gy (70)
According to the independence assumption, only the last term kv—v—2
in the expectation is nonzero. Using near-stationary assumptionir [K (k)] ~ k*v*tr {E [~ (k)R.(k)hh”
this term can be derived as xR, (k)@ (k)] }
k202 H
. ko i _(kv—v—Q)(kv—v—4)h R.(k)
Ele(k)] ~E |-®7'(k) Y > ei(n)ef’ (n)h « R-7R, (K)h. (71)
n=1[=1 4
—kv 1 .
y— 2R R.(k)h. (66)

In the derivation of (71), we use the approximation that with
small decision error

Then using the independence assumptii(¥) can be simpli-
fied as l k

S ST S e (el (n)hhFe, (na)ef! <n2>]

ni=1l=1ns=11=1

K(k) =K (k) + Ko (k) + K3 (k) + Ka(k) (67) Kow
where ~E [Z Z el(n ] hhE [Z > e ]
[ k v k v n=11=1 =11=1
Ki(h)=E[®7'(k) Y > > > = k20®R. (k)hh " R, (k).
L ni=1ll;=1ns=11,=1
th (nl)n* 11 FOTRLE P TL2u{{( )é_l(k)] i i i
From above, we can see that the behavior of the estimation
Ko (k) =F error is related to the behavior of the decision eRQ(k). If we
(k) nlzzl ,12:1 n;l 122:1 assume that the decision error is near stationary, & (k)]
el ()@ tr[Ko (k)] andtr[K3(k)] decay linearly to zero as — 00. As
X‘?ll(nl)n‘ll’”ln fam2 er, (n2) @7 (k)] k — oo, tr[K4(k)] converges a nonzero constant which is
Ka(k)=E | 1(k) > > > > w,(m)
- n;l h=1 nzl =1 ) Jim r [Ka(k)] = h”R,RZR.h. (72)
X(:-:ll (n1)hh ke12 (n2>1112 (ng)®~ (k)] Hence. Do
v ¢ v . H H —2
Ki(k) =B @71 (k) D > > > en(m)eq(n) Jim B[ (R)e(h)] =hTRR Reh o (73)
L ni=1ll;=1ns=11>=1

xhhe;, (ng)eg(ng)@_l(k)} . [
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Then we can derive the SER for QAM using (77). A5is

large and ignores the high-order term, the SER formula can be

PROOF OFTHEOREM2

Proof: The residual noise at the decision point is

N A
ik = —%Xi,,k + Wik—1Ni. (74)

It then can be shown that the mean of the residual noise is

simplified as

PxQ <d— 2|p3?{9}|> 10 <d—|— 2|p3?{9}|>

+Q<d—2|p%{9}|>+Q<d+2|%{9}|>. 78)

p
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