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Performance Analysis for Adaptive Channel
Estimation Exploiting Cyclic Prefix in

Multicarrier Modulation Systems
Xiaowen Wang, Member, IEEE,and K. J. Ray Liu, Fellow, IEEE

Abstract—Multicarrier modulation (MCM) has gained growing
interest in high-data-rate communications in both wire and
wireless environments. The channel estimation is a crucial aspect
in MCM systems. In this paper, we first present a novel adaptive
channel estimation algorithm exploiting the channel information
contained in the cyclic prefix of the MCM system. In simulation,
we show that this algorithm outperforms the existing scheme.
Then we theoretically analyze the performance of the adaptive
algorithm considering both channel noise and decision error. We
prove that the algorithm is guaranteed to converge with proper
loading. Computer simulation shows that our analytical results
are quite close to the simulation.

Index Terms—Channel estimation, cyclic prefix, multicarrier
modulation (MCM), performance analysis.

I. INTRODUCTION

M ULTICARRIER modulation (MCM) is now considered
an effective technique for both wire and wireless com-

munications [1]. MCM partitions the entire bandwidth into sev-
eral parallel subchannels by dividing the transmit data into sev-
eral parallel low-bit-rate data streams to modulate the carriers
corresponding to those subchannels. It is a scheme compatible
to the famous water-filling theorem [3] and provides an op-
timal way for channel capacity usage by adjusting the bit rate
and transmit power according to the conditions of subchannels.
MCM is also a block-oriented modulation scheme, which re-
sults in a relative longer symbol duration and produces greater
immunity to impulse noise and intersymbol interference (ISI).
Because of these advantages, MCM is considered a promising
technique in digital subscriber line (xDSL), digital video/audio
broadcasting, and wireless communications [1], [4].

The channel information plays an important role in the im-
plementation of MCM systems. It is essential to bit and power
allocations and signal detections. Without perfect knowledge
of channel parameters, the MCM system either cannot work
or may incur significant performance loss. Some techniques,
such as differential phase-shift keying (PSK) modulation, can
be used to eliminate the need for channel information. However,
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it causes 3-4-dB signal-to-noise ratio (SNR) loss compared with
coherent demodulation if channel information is known.

In applications such as xDSL, some training processes are
performed to estimate the channel before the communication
is set up. Then, this channel estimate is used throughout the
entire communication [3]. If the channel changes, retraining
is required to track the variation. In wireless applications, the
channel variation is assumed continuous, then pilot symbols are
used to catch the channel variation [8]. However, in order to es-
timate the channel more efficiently, people are trying to estimate
the channel information directly from the transmitted data.

We propose an adaptive channel estimation algorithm by ex-
ploiting the cyclic prefix in the MCM system [9], [10]. The
cyclic prefix used in MCM systems is originally designed to
reduce ISI. However, it is nothing but a repeated part of the
transmit data which can be used for channel estimation. Based
on this observation, we propose a block recursive least-square
(RLS) algorithm to estimate the channel, adaptively exploiting
the information in cyclic prefix. The algorithm uses decision di-
rected samples, and hence, no extra training is needed. The sim-
ulation shows that by using the proposed adaptive algorithm, the
MCM system performs more robustly than the existing system
with adaptive equalization [3]. In this paper, we will present the
adaptive channel estimation algorithm and analyze the perfor-
mance of it theoretically.

A lot of research has been done on the performance analysis
of the decision-directed estimation and equalization schemes
[11], [13]–[19], [21]. In [21], the system identification problem
with noisy input is visited. In [17]–[19], the error propagation
through the fixed decision feedback equalizer is analyzed.
However, in our algorithm, the linear equalizer is used and
adapted using the decision-directed samples. Blind equal-
ization that does not need extra training is studied for linear
equalizer adaptation in [11], [13]–[15], and for decision feed-
back equalizer adaptation in [16]. In such blind schemes, the
channel inverse is estimated from the channel output and the
decision-directed samples are used as the desired output of the
channel inverse filter. The understanding of these algorithms
is that due to the nonlinearity of the decision-directed scheme,
the cost function usually has more than one local minima, and
some kinds of smart initialization schemes must be used to
force the system to converge to the global minimum.

The goal of the proposed adaptive estimation algorithm is to
estimate the channel itself, not the channel inverse. The deci-
sion-directed samples are treated as the filter input data, while
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Fig. 1. MCM system with cyclic prefix and adaptive channel estimation.

the channel output is treated as the desired filter output. The de-
cision error in the blind equalization algorithms only appears in
the cross-correlation vector of the Wiener–Hopf equation, while
in our adaptive estimation algorithm, it appears in both data cor-
relation matrix and cross-correlation vector. In this paper, we
are trying to consider both the effect of channel noise and deci-
sion error. The problem becomes complicated because the de-
cision error and the channel estimation error affect each other
through a closed feedback loop constituted by the signal detec-
tion, channel estimation, and equalization. We try to separate
the analysis into two parts. First, we analyze the impact of deci-
sion error on the channel estimation. Then, we study the impact
of estimation error on the signal detection and try to derive the
symbol error rate (SER) based on this analysis. Finally, a recur-
sive mapping of SER is constructed using the results of the these
two parts. The convergence of this recursive mapping is consid-
ered to draw our final conclusions.

The rest of the paper is organized in the following way. First,
we will present the MCM system and the adaptive channel esti-
mation algorithm. Then we will do a performance analysis fol-
lowing the outline given above. Because some approximation is
applied in the analysis, we will give the computer simulation ex-
amples to verify the validity of the theoretical analysis. Finally,
we present our conclusions.

II. MCM SYSTEM AND ADAPTIVE CHANNEL

ESTIMATION ALGORITHM

In this section, we will first present our adaptive channel esti-
mation scheme using cyclic prefix and then compare it with the
existing adaptive equalization scheme in [3]. We will show in
simulation that the proposed scheme outperforms the existing
scheme.

A. MCM System Using Cyclic Prefix

Fig. 1 shows a MCM system using cyclic prefix with adaptive
channel estimation. The system has complex parallel sub-
channels. The input data can first be coded and interleaved and
then are buffered to blocks. Each block of data is then divided
into bit streams and mapped to some complex constellation
points, , at block . The modulation
is implemented by -point inverse discrete Fourier transform

(IDFT) on where the last
samples are just the conjugates of the first samples, and
therefore, the modulated time domain signal is real, which is

(1)

The transmitted energy and bit rate for dif-
ferent subchannels can be allocated according to the channel
condition.

A cyclic prefix is constructed
by , and transmitted before .
At the receiver, the prefix part
is discarded. The demodulation is performed only on

by the DFT operation. The
demodulated data is with

(2)

The channel is usually modeled as a finite impulse response
(FIR) filter with real taps. The impulse response of the
channel is . The channel noise ,

is assumed to be independent
identically distributed (i.i.d.) real Gaussian distribution with
zero mean and variance . Then the relationship between the
channel input and output can be expressed as

.

(3)

From (3), we can see that there is no interference from the
previous blocks in the received signal. It shows that the cyclic
prefix reduces the ISI between ’s and hence, the subchannels
can be viewed as independent with each other, i.e.,

(4)

where and
is the noise of the

th subchannel, which is also with zero mean and variance
and independent with that of other subchannels.

For the independent subchannel of (4), only a one-tap equal-
izer is needed to get the estimation of from , i.e.,

(5)

where

(6)

Then the decision is made upon , resulting in
, where is some type of quantization function. Then

the decoding and deinterleaving are done based on, if any
of coding and interleaving are used.
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B. Adaptive Channel Estimation Algorithm

In the MCM system, usually the received cyclic prefix
part is discarded. However, it is found that if all the
prefix parts concatenate together as a pair of sequences

and
, the

relationship between these two satisfies [9]

(7)

Based on this equation, a block RLS algorithm can be adopted
to adaptively estimate the channel by directly solving (7).

First, the estimated transmitted cyclic prefix is obtained by
performing IDFT on the decision-directed sample

(8)

The estimated transmitted cyclic prefix can also be constructed
from the decoding data. However, in this paper, we only use the
decision-directed ones.

Then the estimated correlation matrix and the cross-
correlation vector are formed as

(9)

(10)

where is the
estimated data vector. and are forgetting factors across
blocks and within blocks, respectively. These two factors should
be both equal to or less than one.

The channel estimation then is obtained as

(11)

where .
Here we also would like to define the ideal data correlation

matrix and the cross-correlation vector with perfect knowledge
of the transmitted data for the future discussion. The ideal data
correlation matrix is

(12)

and the ideal cross-correlation vector is

(13)

where is the
ideal data vector.

Clearly, the above algorithm is a decision-directed scheme.
In order to start the algorithm, we need to do some initializa-
tion. At initialization, we send an initial training to get the ini-
tial channel response . Using a quadrature amplitude mod-
ulation (QAM) constellation for all subchannels, the loading

is done according to ’s with the following requirement on
SER:

Q

(14)
where is the initial SER and is the minimum dis-
tance between the constellation points of theth subchannel,
respectively. is some preset required value of SER to con-
trol the decision error. The Q-function is defined as Q

. Then

Q (15)

This optimization problem is subjected to the energy con-
straint, i.e.,

E (16)

where is the set of all the used subchannels.
For QAM constellation

(17)

with as the number of constellation points used in theth
subchannels.

As the loading is done, the data are transmitted according to
the bit and energy allocated to each subchannel. The receiver
then performs the following adaptive channel estimation
algorithm.

Input: and .
Known parameters: and .
Selecting parameters: and .
Initialization: , an initial training

process is used to initialize and
.

Computation:

1) , .
2) , .
3) ,

.
4) ,

.
5) .

Here steps 4 and 5 can be replaced by existing fast RLS
algorithms [20].

C. Comparison With Existing Adaptive Equalization Scheme

In the MCM system, the subchannels are considered indepen-
dent. An adaptive equalization scheme for single-channel sys-
tems then can be applied for each subchannel. As described in
[3], such an adaptive equalization scheme is shown in Fig. 2.
The equalizer coefficient is updated by

(18)
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Fig. 2. Adaptive equalization scheme.

Fig. 3. SER iteration compared with existing adaptive equalization (v = 64,
� = 0:01, P (0) = 10 , � = 0:01,� = 0:7, and� = 1).

In [11] and [13], the convergence of such an adaptive scheme
is proved under the condition that the channel noise is small
and no decision error exists. However, in Fig. 3, our simulation
shows that such a system fails to follow the channel variation
while our adaptive channel estimation works.

The MCM system used in the simulation has 256
complex subchannels. The average transmit energy
is one. Initially, the channel transfer function used is

and the initial
loading is done according to it. At the 20th block, the channel
is changed to .
The figure shows the averaged SER, which is defined as

(19)

where is the SER of theth subchannel of theth block.
The step size used in (18) is while the forgetting fac-
tors used in the proposed adaptive channel estimation algorithm
are and . It is clear that the proposed adaptive
channel estimation algorithm can follow such a channel varia-
tion, whereas the existing scheme fails to do so.

In the figure, we also show the result of the proposed adap-
tive algorithm using the data part together with the cyclic
prefix to form the estimated correlation matrix and
cross-correlation vector . It is shown in the figure that the
algorithm converges much slower than the one that only uses

the cyclic prefix. In the following sections, we will discuss the
performance analysis problem of the proposed adaptive channel
estimation algorithm and try to explain the results.

III. PERFORMANCEANALYSIS WITH EXISTENCE OF

DECISION ERROR

From this section, we begin the analysis of the proposed
channel estimation algorithm. First, we study the impact of
decision error on the channel estimation. As described in
Section II-B, the decision-directed samples are used as the
estimated transmitted cyclic prefix part. If we can get the
perfect samples of the cyclic prefix, then we know from the
literature [20] that the algorithm will converge to an unbiased
estimation linearly, and the convergence rate is determined by
the eigenvalue spread of the data correlation matrix. However,
the detected signals are used as the estimation of the transmitted
cyclic prefix and the decision error would affect the channel
estimation, which is studied next. The channel estimation with
both noise and decision error is analyzed in this section. Both
forgetting factors and are one in the following analysis.

A. Definitions and Assumptions

The adaptive channel estimation algorithm includes two pro-
cesses. One is the signal detection process, in which the esti-
mated data samples are obtained. The other is the channel es-
timation process, in which the channel is estimated using the
estimated data. To analyze the impacts between the two pro-
cesses, we need to define the decision error and estimation error
first. The signal detection in MCM is done in the frequency do-
main, while the channel estimation is done in the time domain.
Hence, the decision error and the estimation error are defined in
both time and frequency domains.

First, define frequency-domain decision error as

(20)

where ’s are independent with differentand . The energy

of , E , is bounded by
for QAM constellation.

The time-domain decision error is given by

(21)

Then, the estimated data vector can be written as

(22)

where .
The time-domain estimation error

is given by

(23)

The frequency-domain estimation error is defined as

(24)
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The energy of the frequency-domain estimation error is

E (25)

In order to make the analysis problem tractable, we have to
make the following three assumptions.

Assumption 1 (Independence Assumption):The cyclic prefix
, channel noise , and the decision error are indepen-

dent of each other for .
Assumption 2 (Near-Stationary Assumption):As the system

is near the equilibrium, we made the following assumptions
about the decision error.

E (26)

and assume does not change much with, so that

E (27)

Assumption 3 (Gaussian Distribution Assumption):Define
E . We assume that the input data vector

is generated from the ( )-dimensional Gaussian distri-
bution independently. We also assume that the time-
domain decision error is also Gaussian distributed. It is
proved in [20, App. J] that

E (28)

E (29)

We have the following remarks about the above assumptions.
1) Ignoring the difference of decision error of different con-

stellation points, the decision error ’s are independent of
input data ’s and only depend on the noise ’s inside the
data block part, i.e., . ’s are independent
of noise samples ’s in the cyclic prefix part. However, if we
also use the data part to do the channel estimation, the decision
error is correlated with the noise samples inside the data part,
which not only makes the analysis in the following section dif-
ficult, but also contributes to the slow convergence in Fig. 3.

2) The Gaussian distribution assumption is generally not true.
The correlation of the time-domain data is

E

Only when the transmitted data in all the subchannels have
same energy, is not dependent on, and according to the
central limit theorem, can be approximated by the
Gaussian distribution. However, if we do the loading, the
time-domain data becomes correlated. For example, for the
channel used in Section II-C, the transmitted energy is focused
in the first 100 subchannels. In this case, the correlation of the
time-domain data is very large. If we use the data part to form
the estimated correlation matrix , the matrix could be
very ill-conditioned because the difference between ’s for
different ’s is very small. On the other hand, the data vector

formed by the cyclic prefix part contains the data samples from
two consecutive blocks that are independent of each other. For
this reason, the estimated correlation matrix formed by
the cyclic prefix part is better conditioned than the one formed
by the data part. This is the other reason that contributes to the
result of Fig. 3.

B. Convergence Analysis With Decision Error

Now we will try to analyze the convergence of the estimation
algorithm. To do that, we need some approximations on the es-
timation error. Substituting (22) into (9) results in

(30)

with

(31)

Then,

(32)

with

(33)

Thus, the estimation error can be written as

(34)

Because still has values in the same constellation as that
of , is generally full rank if both and are gen-
erated randomly. Then the above estimation error is bounded,
since the decision error is always bounded. Therefore, even if
the system cannot converge to the desired point, it would be
bounded inside a certain region. Now we are going to show
that if the decision error is small enough, the estimation error
is going to converge to some steady point.

Suppose has very small eigenvalues which
are all much less than one, then

(35)

Then, we have the following approximation for the estimation
error:

(36)

Then, we have the following statement about the dynamic be-
havior of the channel estimation.

Theorem 1: The mean value of the estimation error satisfies

E (37)

E (38)
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The mean squared channel estimation error E con-
verges linearly to a nonzero steady point as , i.e,

E (39)

Define the estimation error correlation matrix as

E (40)

Then, the theorem can be proved by calculating

E

The detail of the proof is shown in Appendix I.
The constant in (39) is just the square of (38). The theorem

states that the adaptive algorithm will converges to this sta-
tionary bias linearly as .

When the decision error is small enough to be ignored, the
mean squared estimation error can be approximated as1

(41)

where ’s are the eigenvalues of .
From the literature about the convergence of the RLS algo-

rithm [20], we know that the convergence of the estimation al-
gorithm is determined in proportion to the inverse of the smallest
eigenvalue of the data correlation matrix. (41) shows this also is
the case when decision error exists. Ill-conditioned data input
may lead to a slower convergence rate.

IV. PERFORMANCEANALYSIS WITH EXISTENCE OF

ESTIMATION ERROR

In this section, we analyze how the estimation error affects
the residual noise at decision point which determines the SER
and hence, the decision error.

We define the residual noise at the decision point as

(42)

From Section II-A, is the output of the equalizer. In prac-
tical systems, the equalizer is obtained from the channel estima-
tion. The equalizer now is

(43)

Then, the residual noise is

(44)

Due to the loading algorithm, we can assume ’s for
is large enough for the following approximation:

(45)

1In this case, the dominate term in (67) isK (k) andK (k).

Using the results of the previous section, can be viewed
as the linear combination of and . Then, we can say
that is Guassian distributed based on the Gaussian dis-
tribution assumption of and .

Theorem 2: Under the independence assumption and
ignoring higher order error terms such as E and

E , the channel estimation error propagates
to the decision point as an additional Gaussian noise term
conditioning on the knowledge of the transmitted signal. The
conditioned probability of the residual noise at the
th subchannel then follows , where

(46)

(47)

Using the distribution of the residual noise conditioned
on the transmitted signal , we can calculate the symbol error
probability when transmitted signal is . The SER then is ob-
tained by taking expectation over the signal constellations.

V. RECURSIVEMAPPING OFSER

In this section, we are going to study the SER at the decision
point before decoding. The decision error can be calculated once
the SER is known. Then the decision error propagates to the
channel estimation, and the estimation error affects the residual
noise, which determines SER.

Suppose the SER ’s are known. Assume the detection
only mistakes the detected signal to the neighbor of the trans-
mitted signal. Then, the decision error as

(48)

As stated in the last section, the residual noise at the decision
point is a Gaussian noise with mean of and variance

. Then the SER can be calculated as2

E

E

(49)

where is the symbol error probability of when is
transmitted. is the constellation of theth subchannel.

A. Transient Analysis

In this section, we study the case when the adaptive al-
gorithm just started and the estimation error is relatively
large. In this case, we can see from (49) that if the bias
of channel estimation is so large that or

is much larger compared to , the SER is

2Refer to Appendix III for detail derivation.
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dominated by or
. In this case, the SER

is bounded by

E

Using the results ofTheorem 1, we have

(50)

(51)

where .
As stated in Section III-B, the estimation error is bounded.

Then, we define . The SER bound
becomes

(52)

Define , then

E

(53)

We now form a recursive mapping, . The condition for
this recursive mapping to converge is that , i.e.,

E (54)

where
.

As the adaptive algorithm begins, the offset caused
by the estimation error dominates the SER. In this case, (54)
is the sufficient condition to make the algorithm converge to an
equilibrium. If this condition is satisfied and the SER is bounded
to a small range that can be ignored, we can further
analyze the convergence property of the system.

B. Local Convergence

In this section, we will assume that the system is near the
equilibrium, and the SER is small enough to ignore the offset
caused by . Then the SER can be approximated by

E Q (55)

Since the decision error is small, approximate the estimation
error as

(56)

For the frequency domain estimation error, we have

Hence, the frequency domain estimation error can be approxi-
mated as

(57)

The SER then can be derived as

(58)

Define a weighted average SER as

(59)

The iteration of is

(60)

The condition for this iteration to converge is
It is easy to calculate this derivative, and the condi-

tion becomes

E (61)

with

(62)
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Now let us consider the function . It is easy to find
out that this function has one maxima at . Then is
bounded by

E

(63)

The boundness of implies that

(64)

This means that the adaptive channel estimation algorithm will
converge as the iteration goes on.

C. Discussions

In this section, we will discuss some factors that affect the
convergence.

First of all, in both (54) and (61), plays an im-
portant role. It is required that be small in order to
get a faster convergence. If is a diagonal matrix, then

where is the eigenvalue of . This again indicates the con-
clusion we have stated in Section III already that the input data
need to be well-conditioned to guarantee a fast convergence of
the system. Because the loading algorithm used in this paper al-
ways tries to load the data compatible to the channel spectrum,
the time-domain data becomes correlated, which may lead to a
large condition number of the data correlation matrix, especially
in the case where the whole block of the data is fed back. Such
an ill-conditioned correlation matrix significantly slows down
the convergence of the algorithm.

It is also noticed that there is no noise variance term in (63).
However, it does not mean the noise does not affect the SER it-
eration. It has its impact through the loading, since the different
noise level results in different constellations. Then the expec-
tation in (63) is taken over different constellations. This may
cause different results. Moreover, if we fix the transmit energy
and the SER requirement, increasing the channel noise may lead
some subchannels to become unused, which will significantly
affect the correlation of the time-domain data, and then affect
the convergence of the system. The only way to combat this phe-
nomena is to increase the transmit power, which again becomes
a tradeoff between performance and cost.

Further analysis of indicates that the iteration con-
verges faster as goes smaller. Such a function
may go small along two directions, eitheris small or large.
However, when , it will make the SER go to one,
which means the system is collapsed. Hence, is a
trivial solution for the equilibrium. In order to make the system
converge faster, we should let be as large as possible. It
is easy to see that goes larger when is small. According
to the definition, is weighted by the ratio of ideal channel
response over the initial channel response . Since

Q is a convex function, applying Jensen’s inequality to (60)
gives us

(65)

The equality is valid if is constant. This
means that the initial channel response, on which loading is
based, should have the same shape as that of the ideal channel
response in order to make the system converge faster. It is
also noticed that the right-hand side of the inequality becomes
smaller when becomes larger. This means
that we can add more gap in loading to make the system con-
verge faster.

The other factor that contributes to the nice convergence prop-
erty of the proposed algorithm is that the convergence depends
on the overall performance of the system. As shown in (60), the
SER iteration for any individual subchannel depends on the per-
formance of the whole system . In contrast, the existing
adaptive equalization scheme in Section II-C treats all the sub-
channels independently and applies the same scheme for each
subchannel. Therefore, the convergence only depends on the
channel variation and performance of individual subchannel. In
this case, if the performance of a specific subchannel goes bad,
it may never recover again. However, in our algorithm, it can
be recovered if the overall system still performs well. The key
point here is that the independence of subchannels is an advan-
tage for the signal detection but a disadvantage for the channel
estimation, because the channel responses of different subchan-
nels are actually correlated.

VI. COMPUTERSIMULATION

Since we use some approximations in the previous analysis,
computer simulation is done to verify the analysis results. The
MCM system adopted in this section has 256 complex subchan-
nels and an average transmit energy of one in all the simulations.

Example 1: By this example, we show how a stationary deci-
sion error affects the channel estimation. In order to do that, we
use the ideal channel information in the equalizer, i.e., no esti-
mation error propagates to decision point. The transfer function
used in this example is

.
Fig. 4(a) and (b) shows the mean-squared channel esti-

mation error E and mean-squared residual
noise with and without decision error,
respectively. It can be seen that there is a constant difference
between the two curves of estimation error which corresponds
to the bias of the channel estimation caused by the decision
error. This bias also propagates to the decision point which is
shown in Fig. 4(b).

Example 2: The transfer function of the channel used in this
example is . We show the SER itera-
tion in (a) and the mean-squared channel estimation error in (b).
Two cases of loading are simulated in Fig. 5(a). In one case, the
loading is done according to the flat channel response. In the
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(a)

(b)

Fig. 4. (a) Mean-squared esimation error and (b) residual noise at the decision
point (v = 32, � = � = 1, � = 0:01, andP (0) = 10 ).

other case, the loading is done according to the ideal channel
response . In Fig. 5(b), the case of ideal loading is shown
with the standard deviation of the mean-squared error. In both
(a) and (b), our analytical results are quite close to the simula-
tions. The figure also verifies that the system converges faster
when loading is done according to the ideal channel informa-
tion. It converges in about 10 iterations when ideal loading is
done, and in about 20 iterations with flat loading. Furthermore,
the ideal loading has better overall performance than the non-
ideal flat loading.

VII. CONCLUSION

In this paper, we first present an adaptive channel estima-
tion algorithm for MCM systems using the cyclic prefix. We
observed that the cyclic prefix originally used to reduce ISI is
actually a source of channel information. A block RLS algo-
rithm using decision-directed samples then is applied to exploit

(a)

(b)

Fig. 5. (a) SER and (b) mean-squared error iteration (v = 32,� = � = 1,
� = 0:01, andP (0) = 10 ).

the channel information in such a training sequence. In our sim-
ulation, the proposed algorithm performs more robustly than the
existing adaptive equalization scheme [3] without sending extra
training.

Then we investigate the performance analysis of the adaptive
channel estimation algorithm. We first prove that the existence
of decision error results in a biased channel estimation and the
algorithm converges with the same rate as that without decision
error. Then we analyze the effect of the channel estimation error
on the system performance and prove that the channel estima-
tion error appears at the decision point as an additional noise.
Finally, we derive a recursive mapping of SER using the above
conclusions. We first derive the SER bound as the channel es-
timation error is large. Then we consider local convergence of
the recursive mapping and find that the system will be guaran-
teed to converge as the iteration goes on. The convergence rate
is determined by the eigenvalues of the data correlation matrix,
which is affected by the channel noise and loading algorithm.
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In our analysis, we consider both the channel noise and the de-
cision error in signal detection, which is different from most of
the analysis of such a decision-directed algorithm in the existing
literature. Thus, the analysis presented in this paper is closer
to the practical environment. However, it should be noted that
some assumptions are made in the analysis. Careful evaluation
of the validity of those assumptions is necessary before the anal-
ysis results can be used in the MCM system design.

APPENDIX I

PROOF OFTHEOREM1

Proof: Taking expectation of (36), we have

E E

E

According to the independence assumption, only the last term
in the expectation is nonzero. Using near-stationary assumption,
this term can be derived as

E E

(66)

Then using the independence assumption, can be simpli-
fied as

(67)

where

Using the near stationary and Gaussian input assumptions, it can
be shown that

(68)

E

E

R (69)

E

(70)

E

(71)

In the derivation of (71), we use the approximation that with
small decision error

E

E E

From above, we can see that the behavior of the estimation
error is related to the behavior of the decision error . If we
assume that the decision error is near stationary, then ,

and decay linearly to zero as . As
, converges a nonzero constant which is

(72)

Hence,

E (73)
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APPENDIX II

PROOF OFTHEOREM2

Proof: The residual noise at the decision point is

(74)

It then can be shown that the mean of the residual noise is

E
E

The energy of the residual noise is

E

(76)

It shows that the residual noise with the channel estimation
error is equivalent to the residual noise of the system with
channel noise energy and using perfect
channel parameters in equalizers.

APPENDIX III

DERIVATION OF SER WITH NONZEROMEAN GAUSSIAN NOISE

Suppose the noise at the decision point is . Then
following the derivation of SER for QAM constellation in [22],
the SER can be derived from the pulse amplitude modulation
(PAM) constellation, i.e.,

Q Q

where is number of the constellation points andis the dis-
tance between the adjacent constellation points.

Similarly, for the PAM constellation with noise , we
have

Q Q

Then we can derive the SER for QAM using (77). As is
large and ignores the high-order term, the SER formula can be
simplified as

Q Q

Q Q (78)
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