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Orthogonal frequency division multiplexing (OFDM) is an effective technique for the future 3G communications because of its
great immunity to impulse noise and intersymbol interference. The channel estimation is a crucial aspect in the design of OFDM
systems. In this work, we propose a channel estimation algorithm based on a time-frequency polynomial model of the fading
multipath channels. The algorithm exploits the correlation of the channel responses in both time and frequency domains and
hence reduce more noise than the methods using only time or frequency polynomial model. The estimator is also more robust
compared to the existing methods based on Fourier transform. The simulation shows that it has more than 5 dB improvement
in terms of mean-squared estimation error under some practical channel conditions. The algorithm needs little prior knowledge
about the delay and fading properties of the channel. The algorithm can be implemented recursively and can adjust itself to follow
the variation of the channel statistics.
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1. INTRODUCTION

The 3G wireless communication system is the next genera-
tion mobile cellular system that aims to provide high rate
data communications of a bit rate up to 2 Mbit/s. Among
many technical challenges in this broadband system, the se-
vere intersymbol interference (ISI) caused by multipath ef-
fect of wireless channels is an essential one. One effective
technique to deal with this problem is the orthogonal fre-
quency division multiplexing (OFDM) [1, 2]. In OFDM sys-
tems, the entire bandwidth is partitioned into parallel sub-
channels by dividing the transmit data into several paral-
lel low bit rate data streams to modulate the carriers cor-
responding to those subchannels. By doing so, the OFDM
system has a relatively longer symbol duration, thus pro-
vides a great resistance to ISI and impulse noise. When the
number of subchannels is large enough, the subchannels can
be treated as independent of each other and only a one-tap
equalizer is needed for each subchannel. Because of these
advantages, OFDM has become a promising technique for
broadband wireless communications.

Channel estimation is a key issue in a communication

system, as is the case for the OFDM system. Without the
knowledge of channel information, noncoherent detection,
such as differential modulation, has to be used and results
in some performance loss compared to the coherent detec-
tion. The channel estimation problem becomes more im-
portant for the 3G systems because many sophisticated sig-
nal processing techniques that require the knowledge of the
channel information are expected to be used to meet the
challenge of throughput and performance. For example, the
independence of the subchannels in OFDM systems pro-
vides an easy way to optimize the transmitter design by
adjusting the bit rate and transmit power across subchan-
nels according to their channel conditions [3], which im-
plies that the channel information has to be known at the
transmitter.

The channel estimation problem is also more challeng-
ing in the 3G system because both the multipath effect and
the fading effect have to be considered in this mobile broad-
band system. The important observation to solve the channel
estimation problem in the OFDM systems is that the fading
multipath channel in the 3G system is correlated in both time
and frequency domain, even though subchannels are treated
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independently when performing the signal detection. The
channel estimation algorithms should exploit such correla-
tion to improve the accuracy of the estimation. Van de Beek
et al. [4] tried to exploit the correlation of the channel pa-
rameters in frequency domain while Mignone and Morello
[5] used the correlation in time domain. Li et al. [6] con-
sidered the correlation in both time and frequency domains.
The estimators designed in these literatures are all Fourier-
transform-based approaches, which implicitly assumed that
the channel power spectrum can be viewed as band lim-
ited. The assumption is true when we consider the ensemble
statistics. However, in practice, we can only get finite discrete
samples of the channel response of the time varying channel.
The leakage can be very severe and then degrade the perfor-
mance dramatically.

In this work, we consider the problem from another
point of view. Because of the correlation of the fading multi-
path channel, it can be viewed as a smoothly varying function
of both time and frequency. It has been stated in the approx-
imation theory that such a smoothly varying function can
be approximated by a set of basis functions [7], for example,
the polynomial basis [8]. Borah and Hart [9, 10] used the
time domain polynomial approximation while Luise et al. in
[11] used the frequency domain polynomial approximation.
However, the channel responses used in coherent detection
of OFDM are located in the time-frequency plane. Therefore,
it is naturally to exploit the channel correlation in both time
and frequency domains using a time-frequency polynomial
model. The noise can then be greatly suppressed by estimat-
ing a smaller number of coefficients of the basis functions
over a large number of observations. Moreover, it also make
the estimator design more flexible and robust to the variation
of channel statistics. We can also view Fourier transform as a
type of model basis function and hence Fourier-transform-
based method is the same type of method as the polynomial-
model-based channel estimation scheme but with differ-
ent model accuracy and different noise reduction capability.
These two methods compared, the model error of the Fourier
basis is very sensitive to the channel statistics and works only
for some very specific system parameters and channel statis-
tics. On the contrary, the polynomial-model-based method
performs more consistently and robustly for variety of
channels.

A key problem in using the polynomial model to estimate
the channel responses is to decide the model order and time-
frequency window dimensions of observations. The model
approximation error of polynomial model decreases when
increasing model order or decreasing the window dimen-
sions. On the other hand, the noise is reduced more when
decreasing the model order or increasing the window dimen-
sions. It is important to reach a tradeoff between the model
error and noise reduction. In this paper, we propose an adap-
tive algorithm that adjusts the window dimensions to balance
the tradeoff. With this adaptive algorithm, the channel corre-
lation function or the fading and delay characteristics are no
longer that essential in the design of the channel estimator.
The estimator can adapt its settings to the variation of the
channel statistics.
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Figure 1: OFDM transmitter and receiver. (a) Transmitter, (b) re-
ceiver.

The rest of the paper is organized as follows. First,
we introduce the OFDM system in Section 2 and the fad-
ing multipath channel in Section 3.1. Then, we discuss
the time-frequency polynomial model Section 3.2 and de-
rive the corresponding recursive channel estimation algo-
rithm in Section 4. The performance analysis is discussed on
the general-model-based estimation approach in Section 5.
Then the window dimension adaptive algorithm is derived
in Section 6 based on the performance analysis. Finally, the
simulation results are presented to demonstrate the perfor-
mance in Section 7 and the conclusion is drawn in Section 8.

2. OFDM SYSTEMS

Figures 1a and 1b show the transmitter and receiver of an
OFDM system, respectively. The OFDM system divides the
whole bandwidth Bd into m subchannels by buffering the
input data to blocks, and then partitions the block into m
lower rate bit streams. In most of OFDM systems, the sub-
channels are divided evenly, the bandwidth of the subchan-
nels or the rate of the bit streams is ∆ f = Bd/m. The bit
streams may contain different amount of bits and use dif-
ferent transmit energy according to the channel condition.
The bit and energy allocation is done by a loading algorithm.
Then the bit streams are mapped to some complex constella-
tion points Xi,k, i = 0, . . . ,m−1 at the kth block. The modula-
tion is then implemented by m-point inverse discrete Fourier
transform (IDFT). Then the modulated data go through P/S
converter to form the serial data xi,k. A cyclic prefix which is
constructed using the last v samples of xi,k’s is inserted before
sending the xi,k’s to the channel. Now it follows that the sym-
bol duration is m/Bd, however, the actual block duration is
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Figure 2: Two typical delay profiles (a) TU and (b) HT.

Tf = (m + v)/Bd. For a system with Bd = 800 kHz, m = 128,
and v = 16, the block duration is Tf = 180 microseconds.
Such a system is used in the rest of this paper.

At the receiver, the prefix part is discarded. The demodu-
lation is performed by the discrete Fourier transform (DFT)
operation. If the cyclic prefix is long enough, then the in-
terference between two OFDM blocks is eliminated and the
subchannels can be viewed as independent of each other, that
is, the demodulated data Yi,k can be expressed as

Yi,k = Hi,kXi,k + Ni,k, (1)

where Hi,k is the channel frequency response at i∆ f of kth
block and Ni,k is the corresponding channel noise that is as-
sumed to be white Gaussian process with zero mean and vari-
ance σ2.

Because of the simple relation of (1), only a one-tap
equalizer is needed for each subchannel at the receiver, that
is,

X̂i,k = Yi,kWi,k, (2)

where the equalizer coefficient Wi,k is some function of Hi,k.
For example, the zero-forcing equalizer is constructed as
Wi,k = 1/Hi,k. Then the decision or decoding is made upon
X̂i,k.

3. POLYNOMIAL CHANNEL MODEL

3.1. Fading multipath channel

In a mobile broadband wireless communication system such
as 3G, the transmission is impaired by both fading that is due
to the mobility, and multipath that is due to the wide band-
width. This fading multipath channel has long been known
to be modeled as a time-varying linear filter [12],

h(t, τ) =
∑
i

γi(t)δ
(
τ − τi

)
, (3)

where γi(t)’s are independent complex Gaussian processes
with zero mean and variance pi’s. For OFDM systems, we
can assume that the channel is time varying for different
blocks but time-invariant within one block. The channel fre-
quency response Hi,k’s are samples of the continuous channel
response H(t, f ) = ∫ h(t, τ)e− j2π f τ dτ, that is,

Hi,k = H
(
kT f , i∆ f

)
. (4)

The correlation function of H(t, f ) is defined as rH(t, f )
�=

E[H(t1, f1)H∗(t1 − t, f1 − f )]. Assume that the correlation
function of γi(t) follows E[γi(t1)γ∗i (t1− t)] = pir(t), then we
have

rH(t, f ) = rt(t)r f ( f ). (5)

For the Rayleigh fading channel [12], rt(t) = J0(2π fDt) and
r f ( f ) = ∑

i pie
− j2π∆ f τi with J0(·) denoting the zero-order

Bessel function, fD being the Doppler frequency describing
the channel variation along t, and pi’s together with τi’s be-
ing delay profiles describing the channel dispersion which
is also often characterized by the maximum delay spread

Td
�= maxi τi. Three types of delay profiles are used in this

work, TU, HT, and 2-ray [13]. The TU and HT delay profiles
are shown in Figure 2. The 2-ray delay profile has two equal
power paths and the delay between two paths is Td. We also
assume that the channel is normalized in our simulation, that
is,
∑

i pi = 1.
From (5), the power spectrum of the channel response is

SH(ξ, ν) =
∫ ∫

rH(t, f )e− j(tξ+ f ν) dξ dν = St(ξ)S f (ν), (6)

where St(ξ) = ∫
rt(t)e− jtξ dξ and S f (ν) = ∫

r f ( f )e− j f ν dν.
Because of the physical mechanism of the propagation, the
channel varies smoothly and most of the energy is concen-
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trated in a finite bandwidth in both time and frequency do-
mains. The bandwidths are fD for St(ξ) and Td for S f (ν), re-
spectively.

3.2. Time-frequency polynomial channel model
of OFDM systems

We know from the approximation theory [7, 8] that the
smoothly varying channel responses can be approximated by
projecting to a finite set of basis functions. In [14], it was
shown that the channel responses in a small time domain
window around a center point k0 of dimension 2K + 1 can
be closely approximated by a small set of polynomial basis
functions, that is,

Hi,k=
M−1∑
m=0

Hi,k0 (m)
(
k−k0

)m
+RM, for k0−K ≤ k ≤ k0+K,

(7)
where

Hi,k0 (m) =
Tm

f

m!
∂mH(t, f )

∂tm

∣∣∣∣
t=k0Tf

,

RM =
((
k − k0

)
Tf
)M

M!
∂MH(t, f )

∂tM

∣∣∣∣
t=t′

(8)

with k0Tf ≤ t′ ≤ kT f .
For such an approximation, it can be proved that the

mean-squared model error is bounded by

E
[∥∥RM

∥∥2] ≤
(((

k − k0
)
Tf
)M

M!

)2 ∫ fD

0
(2πξ)2MSt(ξ)dξ

≤ fD

(
2π
(
k − k0

)
fDT f

M!

)2M

.

(9)

Here we assume that
∫ fD

0 St(ξ)dξ = 1. It can be seen from
(10) that the sufficient condition for this error to con-
verge to zero is fDT f � 1, that is, if fDT f � 1 then
limM→∞ E[‖RM‖2] = 0.

Similarly, if the channel delay spread Td satisfies Td∆ f �
1, which means that the frequency variation of Hi,k’s is
smooth enough along frequencies, then Hi,k’s in a frequency
domain window of dimension 2I +1 around i0, [i0− I, i0 + I],
can be approximated by the polynomial bases, that is,

Hi,k =
N−1∑
n=0

Hi0 ,k(n)
(
i−i0

)n
+RN, for i0−I ≤ i ≤ i0+I, (10)

where

Hi0 ,k(n) = ∆ f n

n!
∂nH(t, f )

∂ f n

∣∣∣∣
f=i0∆ f

,

RN =
((
i− i0

)
∆ f
)N

N !
∂NH(t, f )

∂ f N

∣∣∣∣
f= f ′

(11)

with i0∆ f ≤ f ′ ≤ i∆ f .
The mean-squared model error of this approximation is

bounded by

E
[∥∥RN

∥∥2] ≤
(((

i− i0
)
∆ f
)N

N !

)2 ∫ Td

0
(2πν)NS f (ν)dν. (12)

The time domain expansion (7) is used for channel esti-
mation in [10], while the frequency domain expansion (10)
is adopted in [11]. For a given channel, the selection of the
above two types of expansions depends on the channel statis-
tics, fD and Td, and the system parameters, Tf and ∆ f .
Moreover, it is naturally to expand the channel responses in
both time and frequency domains [15] for the OFDM sys-
tem, since its signal is distributed in a time frequency plane.
The expansion in the time-frequency window of dimensions
(2I + 1)× (2K + 1) around i0 and k0 is

Hi,k =
M−1∑
m=0

N−1∑
n=0

Hi0,k0 (nm)
(
k − k0

)m(
i− i0

)n
+ RMN, (13)

for k0 − K ≤ k ≤ k0 + K and i0 − I ≤ i ≤ i0 + I , where

Hi0 ,k0 (nm) =
Tm

f ∆ f n

m!n!
∂m∂nH(t, f )
∂tm∂ f n

∣∣∣∣
t=k0Tf , f=i0∆ f

,

RMN

= RM + RN

−
((
k − k0

)
Tf
)M((

i− i0
)
∆ f
)N

M!N !
∂M∂NH(t, f )
∂tM∂ f N

∣∣∣∣
t=t′ , f= f ′

(14)

with k0Tf ≤ t′ ≤ kT f and i0∆ f ≤ f ′ ≤ i∆ f .
The mean-squared model error is then bounded by

E
[∥∥RMN

∥∥2] ≤
((

KTf
)M

M!

)2 ∫ fD

0
(2πν)MSt(ξ)dξ

+

(
(I∆ f )N

N !

)2 ∫ Td

0
(2πν)NS f (ν)dν

+

(
(KTf )M

M!

)2(
(I∆ f )N

N !

)2

×
∫ fD

0

∫ Td

0
(2πξ)M(2πν)NSt(ξ)S f (ν)dξ dν.

(15)

Without loss of generality, assuming M = N and us-
ing the multipath Rayleigh fading channel described in
Section 3.1, we can show that [15]

E
[∥∥RMM

∥∥2] ≤ 2M!
(
2πKTf fD

)2M

22M(M!)4
+

(
2πI∆ f Td

)2M

(M!)2

+
2M!

(
4π2KITf∆ f fDTd

)2M

22M(M!)6
.

(16)

Again the sufficient conditions for convergence of the above
expansion are fDT f � 1 and Td∆ f � 1. It is noticed
that these two conditions are usually satisfied in a practical
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OFDM systems. When fDT f > 1, the block duration is so
long or the channel changes are so fast that the channel can-
not be viewed as invariant during one block and the system
suffers large interchannel interference (ICI). On the other
hand, when Td∆ f > 1, the block duration is so short or the
channel dispersion is so large that the subchannels can no
longer be treated independently and the system would suffer
both ISI and ICI. The OFDM system cannot work in either
case. Hence, it is reasonable to assume that both conditions
are satisfied in a well designed OFDM system.

Now we take a close look at the upper bound of the model
error. Suppose that the length of the cyclic prefix v can be ig-
nored compared to the number of the subchannels. Then the
first term in (16) is determined by fDT f = m fD/Bd, while the
second term is determined by ∆ f Td = BdTd/m. The third
term is actually determined by fDTd and is much smaller
than the first two terms, since they both are smaller than
one. For the first two terms, when m is large, the first term
is dominating, then we should choose smaller K or larger M.
While m is small, then the second term is dominating and
I should be smaller or the model order N should be larger.
If the Doppler frequency fD, maximum delay Td, and band-
width Bd are fixed, we can adjust the window dimensions ac-
cording to m to keep the time-frequency model error to cer-
tain level but we still have a small MN/IK . However, if only
time or frequency domain expansion is used, the model error
cannot be adjusted to maintain a small level with the same
M/K or N/I when the number of subchannels m varies.

Figure 3 shows the upper bound of mean the squared
model error with fDT f = Td∆ f = 10−2 and I = K = 5
according to model order M. It shows that the model error
is under −40 dB as the model order is 3. This means that
we only need to estimate 9 model coefficients to get the 121
channel responses. In this figure, we also show the residual
noise for SNR of 10 dB and 20 dB. It shows that the noise

can be greatly reduced with very small penalty on model er-
ror. Moreover, such a model approximation does not need to
know the actual channel correlation function.

4. CHANNEL ESTIMATION ALGORITHM
WITH POLYNOMIAL MODEL

4.1. Estimator structure

The channel estimation problem in OFDM systems is to es-
timate the channel response Hi,k based on the transmitted
signal Xi,k and the received signal Yi,k. The information of
the transmitted signal Xi,k’s is obtained either from training
or from detected feedback. In OFDM systems, an instanta-
neous estimate can be easily constructed as H̃i,k = Yi,k/Xi,k.
Then suppose that we have chosen the model order and win-
dow dimensions such that the model error is small and can
be ignored, we can approximate (13) in a matrix form

Hi0 ,k0 	 QM,N (I, K)bi0,k0 , (17)

where

Hi0 ,k0 =[
H−I+i0 ,−K+k0· · ·HI+i0 ,−K+k0· · ·H−I+i0 ,K+k0· · ·HI+i0 ,K+k0

]T
,

bi0,k0 =
[
Hi0 ,k0 (0, 0) · · ·Hi0 ,k0 (N−1, 0) · · ·Hi0 ,k0 (0,M−1)

· · ·Hi0 ,k0 (N−1,M−1)
]T

,

QM,N (I, K) =




q−I,−K0,0 · · · q−I,−K0,N−1 · · · q−I,−KM−1,0· · · q−I,−KM−1,N−1

...
...

...
...

qI,−K0,0 · · · qI,−K0,N−1· · · qI,−KM−1,0· · · qI,−KM−1,N−1

...
...

...
...

qI,K00 · · · qI,K0,N−1· · · qI,KM−1,0· · · qI,KM−1,N−1



,

(18)

with qi,km,n = inkm, for i = −I, . . . , 0, . . . , I , k = −K, . . . , 0,
. . . , K , m = 0, . . . ,M − 1, and n = 0, . . . , N − 1.

Define

H̃i0 ,k0 =[
H̃−I+i0 ,−K+k0· · · H̃I+i0 ,−K+k0· · · H̃−I+i0 ,K+k0· · · H̃I+i0 ,K+k0

]T
,

(19)

then

H̃i0 ,k0 = Hi0 ,k0 + Ni0 ,k0

	 QM,N (I, K)bi0,k0 + Ni0 ,k0 ,
(20)

where

Ni0 ,k0 =[
N−I+i0 ,−K+k0

X−I+i0,−K+k0

· · ·NI+i0 ,−K+k0

XI+i0,−K+k0

· · ·N−I+i0 ,K+k0

X−I+i0,K+k0

· · ·NI+i0 ,K+k0

XI+i0,K+k0

]T
.

(21)
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Using least square (LS) methods, we can get the estimation
of the coefficients of the polynomial basis from the instanta-
neous estimates

b̂i0,k0 = Q†
M,N (I, K)H̃i0,k0 , (22)

where Q†
M,N (I, K) is the pseudoinverse of QM,N (I, K). The

channel estimation then can be constructed as

Ĥi,k = qM,N
(
i− i0, k − k0

)T
b̂i0,k0

= qM,N
(
i− i0, k − k0

)T
Q†(I, K)H̃i0,k0 ,

(23)

where

qM,N
(
i− i0, k − k0

)
=
[
qi−i0,k−k0

0,0 · · · qi−i0,k−k0
0,N−1 · · · qi−i0,k−k0

M−1,0 · · · qi−i0,k−k0
M−1,N−1

]T
.

(24)

Usually, we fix the value of i− i0 and k− k0, that is, we fix the
point of estimation inside the window and slide the window
to get all the estimations. Then the estimator can be viewed
as a two-dimensional filtering process. Arranging the instan-
taneous estimation inside the window into a matrix form,

H̃ =



H̃−I+i0 ,−K+k0 · · · H̃−I+i,K+k0

...
...

H̃I+i0,−K+k0 · · · H̃I+i0 ,K+k0


 . (25)

Then the estimation is

Ĥi,k = qT
N

(
i− i0

)
Q†T

N (I)H̃Q†
M(K)qM

(
k − k0

)
, (26)

where

qN (i) =
[
i0 i1 · · · iN−1

]T
,

QN (I) =
[

qN (−I) · · · qN (0) · · · qN (I)
]T

.
(27)

The estimator structure is shown in Figure 4. The coefficients
of the frequency domain filter are Q†

N (I)qN (i − i0) and the
coefficients of the time domain filter are Q†

M(K)qM(k − k0).

4.2. Recursive algorithms

The two-dimensional filter can actually be implemented re-
cursively in time and frequency domains, respectively.

Define the basis functions Q′
N (I) as

Q′
N (I)=

[
qN (−I + 1) · · · qN (0) · · · qN (I) qN (I + 1)

]T
.

(28)
The basis Q′

N (I) and QN (I) are actually homomorphic to
each other, that is, there is an invertible matrix R such that

Q′
N (I) = QN (I)R. (29)

This means that instead of using QN (I) as basis, we can use
Q′

N (I) as the basis to construct the estimator, that is,

H̃i,k

H̃i,k−1

H̃i,k−2K Frequency
domain filter

...

Frequency
domain filter

Frequency
domain filter

P/S
Time

domain filter

Reset every
2K + 1 samples

Ĥi,k

Figure 4: The estimator structure.

qT
N

(
i + 1− i0

)
Q′†

N (I) = qT
N

(
i− i0

)
Q†

N (I). (30)

Substitute (30) into (26), we can estimate the channel using
Q′†

n(I). Then the core of the recursive algorithm is to calcu-
late Q′†

N (I) from Q†
N (I) iteratively.

Let P f = (QT
N (I)QN (I))−1 and Pt = (QT

M(K)QM(K))−1.

At initialization, we estimate model coefficients b̂ f (k) or

b̂t(i) regarding to P f or Pt over a window of dimension 2I+1
or 2K + 1. Similar to the recursive least square (RLS) algo-
rithm, using the matrix inverse lemma [16], we can calculate
P+
f = (Q′T

N (I + 1)Q′
N (I + 1))−1 or P+

t = (Q′T
M(K + 1)Q′

M(K +

1))−1 and then the corresponding model coefficients b̂+
f or

b̂+
t recursively over the window of dimension 2I + 2 or 2K + 2

during the updating process. After that apply the matrix in-
verse lemma again, we can calculate P−f = (Q′T

N (I)Q′
N (I))−1

or P−t = (Q′T
M(K)Q′

M(K))−1 and the corresponding model
coefficients b̂−f or b̂−t from P+

f or P+
t over the window of di-

mension 2I + 1 or 2K + 1 during the downdating process.
Then according to (30), the channel can be estimated as

Ĥi+1,k = qT
N

(
i + 1− i0

)
b̂−f ,

Ĥi,k+1 = qT
M

(
k + 1− k0

)
b̂−t .

(31)

As this recursive process going on, the basis function be-
comes qT

M(k+ l−k0) where l is the index of the iteration. The
dynamic range of such a basis function may become so large
that it will affect the numerical stability of the algorithm.
Therefore, regularization using R f or Rt should be used pe-
riodically to scale the basis back to QN (I) or QM(K). The
frequency domain and time domain recursive algorithms are
summarized in Algorithms 1 and 2, respectively. The matri-
ces K+

f and K−
f or K+

t and K−
t are the corresponding gain ma-

trices in updating and downdating. The two-dimensional fil-
ter in the tables is implemented first by frequency domain
filtering then by time domain filtering. The order can be
switched. In that way, the input in Algorithm 2 are instanta-
neous estimates while the inputs in Algorithm 1 are the out-
puts of the time domain filters of Algorithm 2. It is also noted
that the order of downdating and updating can be switched,
too.

In both tables, K+
f , K−

f , P+
f , P−f and K+

t , K−
t , P+

t , P−t can be



824 EURASIP Journal on Applied Signal Processing

Initialization:
with temporary estimation H̃k =

[
H̃−I+i0 ,k · · · H̃I+i0 ,k

]
,

calculate
b̂ f (k) = Q†

N (I)H̃k,

P f =
(

QT
N (I)QN (I)

)−1
.

Updating:
with the new input H̃I+i0+1,k , calculate

K+
f = I− P f qN (I + 1)qT

N (I + 1)

1 + qT
N (I + 1)PqN (I + 1)

,

P+
f = K+

f P f .

∆b+
f = qN (I + 1)H̃I+i0+1,k ,

b+
f = K+

f

(
b̂ f (k) + ∆b+

f

)
.

Downdating:

K−
f = I +

P+
f qN (−I)qT

N (−I)
1− qT

N (−I)P+
f qN (−I) ,

P−f = K−
f P+

f .

∆b−f = qN (−I)H̃−I+i0 ,k ,

b−f = K−
f

(
b+
f − ∆b−f

)
.

Regularization:
b̂ f (k) = R f b−f ,

Ĥi+1,k = qT
N

(
i− i0

)
b̂ f (k).

Algorithm 1: Frequency domain recursive algorithm.

calculated off-line and do not change if the model order and
window dimensions do not change. However, we still put the
calculations inside the updating and downdating process in
case that the window dimensions may change as what hap-
pened in the adaptive algorithm described in Section 6.

The recursive algorithm needs less calculation compared
to direct computation of the product of pseudoinverse when
the window dimensions are much larger than the model or-
der. Many fast algorithms of recursive least square (RLS) can
be used for the practical implementation of such a recursive
algorithm [16]. It also provides an easy way to adjust the win-
dow dimensions for the implementation of the adaptive algo-
rithm.

5. PERFORMANCE ANALYSIS

Suppose that the channel can be modeled by some basis func-
tion, that is, a set of channel responses H can be projected to
a set of basis function Q and the coefficients of the basis func-
tions are b, that is,

H = Qb. (32)

The length of H is L and the length of b is l. In order to get
an accurate channel estimation, we expect that l � L. This
is true if the channel parameters in H is highly correlated.

Initialization:
with frequency domain filter results
Ĥ f =

[
Ĥ(i + 1,−K + k0) · · · Ĥ(i + 1, K + k0)

]
, calculate

b̂t(i + 1) = Q†
M(K)Ĥ f ,

Pt =
(

QT
M(K)QM(K)

)−1
.

Updating:
with the new input Ĥ(i + 1, K + k0 + 1), calculate

K+
t = I− PtqM(K + 1)qT

M(K + 1)
1 + qT

M(K + 1)PtqM(K + 1)
,

P+
t = K+

t Pt .

∆b+
t = qM(K + 1)Ĥ

(
i + 1, K + k0 + 1

)
,

b+
t = K+

t

(
b̂t(i + 1) + ∆b+

t

)
.

Downdating:

K−
t = I +

P+
t qM(−K)qT

M(−K)
1− qT

M(−K)P+
t qM(−K)

,

P−t = K−
t P+

t .

∆b−t = qM(−K)Ĥ
(
i + 1,−K + k0

)
.

b−t = K−
t

(
b+
t − ∆b−t

)
.

Regularization:

b̂t = Rtb−t ,

Ĥi+1,k+1 = qT
M

(
k − k0

)
b̂t(i + 1).

Algorithm 2: Time domain recursive algorithm.

Given a set of noisy observations,

H̃ = H + N, (33)

the LS estimation of the coefficients is

b̂ = Q†H̃. (34)

The channel estimation is then

Ĥ = QQ†H̃. (35)

Define the mean-squared estimation error matrix as

ε = E
[(

Ĥ−H
)(

Ĥ−H
)H]

. (36)

We can show that

ε = (I−QQ†)RH
(

I−QQ†) + QQ†RNQQ†, (37)

where RH = E[HHH] and RN = E[NNH] = σ2I if the trans-
mitted signals of all subchannels are all using the same con-
stant envelop modulation and transmit energy of 1.

The estimation error consists of two parts; one is related
to the model inaccuracy, that is,

εH =
(

I−QQ†)RH
(

I−QQ†), (38)
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and the other is related to the residual noise, that is,

εN = σ2QQ†. (39)

Since RH is a Toeplitz matrix, it can be decomposed as

RH =
[

U1 U2

]Λ 0

0 0




UH

1

UH
2


 , (40)

where Λ is a diagonal matrix with eigenvalues of RH on its di-
agonal. If Q = U1, then the model error is zero. This means
that the optimal function basis, which we can find in terms
of model accuracy, is the eigenbasis U1. However, it requires
the knowledge about the statistics of the channel responses.
In some special cases, we can easily find some specific func-
tion bases that can diagonalize RH without actually knowing
RH . For example, if H is the channel response for one OFDM
block with all the delay paths, τi’s, at the sampling instance of
the OFDM system, then such an optimal function basis is the
DFT matrix [6]. However, in most of practical situations, the
channel delay profiles do not satisfy this condition. There-
fore, using DFT matrix may cause severe leakage problem
and incur a large model error.

The average energy of the residual noise over the entire
estimation window can be calculated as follows:

ēN = σ2

L
tr
[

QQ†] = lσ2

L
. (41)

The average mean-squared error over the whole estimation
window is actually lower bounded by (41). The lower bound
is achieved when Q = U1.

Although the average energy of the residual noise main-
tains the same once the data length and model order is fixed,
the estimation error inside the window is often distributed
unevenly and differently for different basis functions. For the
polynomial model, the estimation error is the least at the cen-
ter point of the window and larger at the edge. Therefore,
we prefer to choose the center of the window to get a better
performance. However, along the time domain, we can only
choose the end point to get a causal filter.

6. OPTIMAL MODEL PARAMETERS ADAPTATION

With estimation point chosen at the center of the frequency
domain window and end point at the time domain window,
the estimation error from (23) becomes

εI,K = E
[∥∥Hi0 ,k0 − Ĥi0 ,k0

∥∥2] = εh + εn, (42)

where the model error is

εh = E
[∥∥Hi0 ,k0 − qM,N (0, K)TQ†

M,N (I, K)Hi0,k0

∥∥2]
= rH(0, 0)− E

[
Hi0 ,k0 HT

i0 ,k0

]
Q†T

M,N (I, K)qM,N (0, K)

− qM,N (0, K)TQ†
M,N (I, K) E

[
Hi0,k0H

∗
i0 ,k0

]
+ qM,N (0, K)TQ†

M,N (I, K) E
[

Hi0 ,k0 HT
i0 ,k0

]
×Q†T

M,N (I, K)qM,N (0, K),

(43)

(1) Initialization: use I0 × K0 calculate estimation and
ε̂0 = ε̂I0 ,K0 .

(2) Use window dimensions I × K to estimate the kth
block and compute the estimated estimation error
ε̂I,K , ε̂I+1,K and ε̂I,K+1.

(3) If ε̂I,K < ε̂0, then I0 = I , K0 = K , ε̂0 = ε̂I,K , and

(a) if |ε̂I,K − ε̂I+1,K | < ε f
th, then I remains un-

changed. Otherwise, if ε̂I,K > ε̂I+1,K , then I =
I + 1, if ε̂I,K < ε̂I+1,K , then I = I − 1.

(b) If |ε̂I,K − ε̂I,K+1| < εtth, then K remains un-
changed. Otherwise, if ε̂I,K > ε̂I,K+1, then K =
K + 1, if ε̂I,K < ε̂I,K+1, then K = K − 1.

Otherwise, I = I0 and K = K0.
(4) Go to step 2 for block k + 1.

Algorithm 3: Window dimension adaptive algorithm.

and the residual noise is

εn = σ2qM,N (0, K)TQ†
M,N (I, K)Q†T

M,N (I, K)qM,N (0, K). (44)

The residual noise is reduced more when the model or-
der M × N becomes small or the window dimension I × K
becomes large. However, the model error will increase in this
case. With fixed polynomial model order M and N , the opti-
mal window dimension is obtained by

min
I,K

εI,K = εh + εn. (45)

Usually, there are several local minima in this optimiza-
tion problem. Considering the computational complexity, we
would prefer the one with small I × K .

In order to adaptively adjust the window dimensions we
need to know the estimation error. Since the actual chan-
nel responses are not known, we have to estimate the esti-
mation error using the instantaneous estimates and the final
estimates. Suppose that the noise statistics is known, we can
calculate the estimated estimation error as

ε̂I,K =
∑
i

∑
k

∥∥H̃i0,k0 − Ĥi0 ,k

∥∥2 − σ2

+ E
[
Ni0 ,k0 NH

i0,k0

]
Q†

M,N (I, K)qM,N (0, K)

+ qM,N (0, K)TQ†
M,N (I, K) E

[
Ni0,k0N

∗
i0 ,k0

]
.

(46)

Using this approximation, the window dimension adap-
tive algorithm for the optimization of (45) is given in
Algorithm 3.

If the recursive algorithm in Algorithms 1 and 2 is
adopted, the window adaptation can be implemented easily.
We just eliminate one downdating when increasing the win-
dow dimension, or eliminate one updating when decreasing
window dimension.

One important problem in the adaptive algorithm is to
determine the threshold ε f

th and εtth. With large threshold,
the algorithm converges faster, but with larger deviation.
Especially when the local minima are located closely, the
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Figure 5: Estimation error and symbol error rate versus SNR (2-ray, M ×N = 3× 3) (a) MSE, (b) SER ( fD = 40 Hz, Td = 5 microseconds,
I × K = 7× 10), (c) MSE, and (d) SER ( fD = 20 Hz, Td = 10 microseconds, I × K = 4× 30).

large threshold may result in unstable convergence. Hence,
it would be preferred to use smaller thresholds here.

7. SIMULATION RESULTS

The OFDM system used in the simulations is the system in-
troduced in Section 2. QPSK modulation is used throughout
all subchannels. Figure 5 shows the mean-squared estimation
error and the symbol error rate (SER) comparison of the al-

gorithm based on the approximations in both time and fre-
quency domains with those based on approximation either
in time or frequency domain. Figures 5a and 5b show the
case of a 2-ray channel with delay spread of 5 microseconds
and Doppler frequency of 40 Hz, while Figures 5c and 5d
show the case of another 2-ray channel with delay spread of
10 microseconds and Doppler frequency of 20 Hz. In both
cases, fDTd remains the same. We can see that the perfor-
mance of using both time and frequency domain expansions
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Figure 6: Estimation error versus SNR (M ×N = 3× 3, fD = 40 Hz), (a) I × K = 5× 15 and (b) I × K = 2× 15.

is better than that of using only frequency domain expansion
or using only time domain expansion in both cases. However,
in the first case, the delay spread is smaller while the Doppler
is larger, then the channel responses have more correlation
in the frequency domain than in the time domain. There-
fore, we use larger frequency domain window to exploit the
frequency domain correlation. In the second case, the delay
spread is larger while the Doppler frequency is smaller, then
the channel responses have more correlation in the time do-
main and we use a larger time domain window to exploit it.
It is shown that we have to use different time and frequency
estimator to best exploit the channel correlations for differ-
ent channels. Using only time or frequency domain scheme
is not enough.

Figure 6 shows the estimation error under different de-
lay profiles with Doppler frequency of 40 Hz. Figure 6a
shows the estimation error with TU delay profile and 2-ray
delay profile of Td = 5 microseconds, which is the max-
imal delay spread of TU while Figure 6b shows the esti-
mation error with HT delay profile and 2-ray delay pro-
file of Td = 17.2 microseconds which is the maximal de-
lay spread of HT. We also compared the results using the
Fourier-transform-based method of [6]. We can see that
for TU or HT, the proposed algorithm performs much
better than the Fourier-transform-based method. However,
for 2-ray channel with Td = 5 microseconds, the Fourier-
transform-based method performs the best. The reason is
that Td = 5 microseconds is an integer multiplication of
the sampling period of the OFDM system, which is ts =
1/800 KHz = 1.25 microseconds. The impulse response of
this 2-ray channel has energy only at the sampling instance

1 2 3 4 5 6 7 8 9 10

Td (µs)

−40

−35

−30

−25

−20

−15

−10

M
SE

(d
B

)

Polynomial model
Fourier transform

Figure 7: Estimation error versus delay spread (SNR = 20 dB, fD =
40 Hz, 2-ray, M ×N = 3× 3, I × K = 5× 15).

of the OFDM system, hence there is no leakage or model er-
ror using Fourier transform, which is used as frequency do-
main estimator in [6]. In this case, the Fourier-transform-
based method actually provides a minimum mean-squared
error estimator. Unfortunately, in the practice, such a case
is quite unlikely especially for the time-varying channel. It
is show that for TU or HT delay profiles and 2-ray with
Td = 17.2 microseconds, there is great amount of leakage
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Figure 8: Window dimensions adaptation (TU, SNR = 10 dB, fD = 40 Hz) (a) Window dimensions (starting from 5 × 5), (b) Window
dimensions (starting from 20× 20), (c) Estimation error (starting from 5× 5), and (d) Estimation error (starting from 20× 20).

using Fourier-transform-based on the sampling frequency
of the OFDM system. The leakage greatly degrades the per-
formance of the Fourier-transform-based method. In con-
trast, the polynomial-model-based method performs consis-
tently for the channels with same maximal delay spread and
hence is more robust to the channel statistics. This is because
the model errors are bounded by the same bound for the
channels with the same Td and fD as stated in Section 3.2.
Therefore, the performance of the polynomial-model-based
channel estimation is not sensitive to the specific correlation

functions of the channels with the same Doppler frequency
and maximum delay spread.

Figure 7 shows the mean-squared estimation error at
SNR of 20 dB with different delay spread of a 2-ray channel.
It further demonstrates the robustness of the polynomial-
model-based method compared to the Fourier-transform-
based method. The Fourier-transform-based method per-
forms better only when the delay spread is at the sampling
instance of the system. For most of the cases, it performs
poorly. However, for the polynomial-model-based method,
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it performs consistently and outperforms the Fourier-
transform-based method most of the time.

Figure 8 shows the window dimension adaptation. The
window dimension variation is shown in Figures 8a and 8b.
The estimation error is shown in Figures 8c and 8d. Two
cases with different initial conditions are simulated, which
are shown in Figures 8a and 8c and Figures 8b and 8d, re-
spectively. In Figures 8a and 8c, the window dimension is
5 × 5 at the beginning, while in Figures 8b and 8d, it is
20 × 20. In both cases, after about 100 iterations, the algo-
rithm converges to a window dimension of 12 × 10 and an
estimation error under −26 dB. However, as mentioned in
Section 6, smaller window dimensions are preferred for the
sake of the computation complexity. With this adaptation
algorithm, the polynomial-model-based method is not only
robust to the specific correlation of the channel variation and
dispersion, but also robust to Td and fD and can follow the
variation of the statistics of the channel. Moreover, in the
previous simulation, fixed window dimensions are used, by
applying this window dimension adaptation algorithm, the
performance in Figure 6 can be further improved.

8. CONCLUSIONS

In this work, we proposed a channel estimation algorithm for
the OFDM system with fading multipath channels, which is
suitable for the applications in 3G wireless communications.
The algorithm is based on the time-frequency polynomial
model that exploits the correlation of the channel responses
in both time and frequency domains. The channel response
is approximated by a small number of time-frequency poly-
nomial basis functions and estimated by first estimating the
coefficients of the bases. The residual noise is significantly re-
duced in this way, compared to the results when approxima-
tion is only done either in time or frequency domain, and the
estimator design is more flexible. Therefore, the approach is
more robust to the channel statistics and system parameters
than the existing Fourier-transform-based method. It does
not require the delay profiles to be integer multiples of the
system sampling period. Moreover, the algorithm can be im-
plemented recursively and can adjust the model parameters
adaptively to the delay and fading characteristics.
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EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING

Special Issue on

The Empirical Mode Decomposition and the
Hilbert-Huang Transform

Call for Papers
Data from natural phenomena are usually nonstationary due
to their transient nature; also, the span of captured data may
be shorter than the longest time scale that describes the phe-
nomenon. In fact, since it is impossible or impractical to ob-
tain infinite data points describing a phenomenon, all data
are invariably short. To simplify processing and analysis, data
stationarity is often assumed even though the condition may
not be strictly satisfied. For instance, the stationarity assump-
tion justifies traditional Fourier-based methods, which uti-
lize a priori basis sets to globally decompose a signal.

To directly address the processing of nonstationary and
nonlinear signals, the Hilbert-Huang transform (HHT) has
recently been developed. The HHT comprises two steps:
empirical mode decomposition (EMD) and Hilbert spectral
analysis (HSA). Unlike Fourier-based methods, the EMD de-
composes a signal into its components adaptively without
using a priori basis. The decomposition is based on the lo-
cal time scale of the data. The adaptive nature of the pro-
cess successfully decomposes nonlinear, nonstationary sig-
nals in the time domain. Moreover, the decomposition com-
ponents, referred to as intrinsic mode functions (IMF), are
generally in good agreement with intuitive and physical sig-
nal interpretations. Moreover, the IMFs have well-defined in-
stantaneous frequencies. Accordingly, the HSA Hilbert trans-
forms the IMFs to generate a full energy-frequency-time plot
(Hilbert spectrum), which gives the instantaneous energy
and frequency content of the signal. The bidimensional em-
pirical mode decomposition (BEMD) has recently been in-
troduced as a 2D extension to the EMD. Thus, the EMD and
BEMD are increasingly being employed to successfully ad-
dress many contemporary signal processing applications.

This special issue seeks to bring to the fore current ad-
vances in HHT, EMD, and BEMD theory, and applications.
Topics of interest include, but are not limited to, the follow-
ing:

• Theoretical analysis and understanding of the EMD
• Performance enhancements of the EMD
• Single decomposition, monitoring, and analysis

• Feature extraction
• Fast and adaptive methods
• Decomposition domain processing methods
• Image analysis and segmentation
• Texture representation and segmentation
• Optimization
• Signal fusion and interpolation
• Signal processing applications in

◦ Fluid dynamics
◦ Acoustics
◦ Seismic events
◦ Biomedicine
◦ Geophysics
◦ Wind engineering
◦ Ocean waves
◦ Finance

Authors should follow the EURASIP Journal on Ad-
vances in Signal Processing manuscript format described
at the journal site http://www.hindawi.com/journals/asp/.
Prospective authors should submit an electronic copy of
their complete manuscript through the EURASIP Journal
on Advances in Signal Processing Manuscript Tracking Sys-
tem at http://mts.hindawi.com/, according to the following
timetable:

Manuscript Due September 1, 2007

First Round of Reviews December 1, 2007

Publication Date March 1, 2008

Guest Editors:

Nii O. Attoh-Okine, Department of Civil and Environmen-
tal Engineering, University of Delaware, Newark, DE 19716-
3120, USA; okine@ce.udel.edu

http://www.hindawi.com/journals/asp/
http://mts.hindawi.com/


Kenneth E. Barner, Department of Electrical and Computer
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Daniel E. Bentil, Departments of Mathematics and Statis-
tics and Molecular Physiology Biophysics, The University of
Vermont, Burlington, VT 05405, USA; dbentil@uvm.edu

Ray Ruichong Zhang, Civil Engineering Specialty, Divi-
sion of Engineering, Colorado School of Mines, Golden, CO
80401, USA; rzhang@mines.edu

Hindawi Publishing Corporation
http://www.hindawi.com



Steering Committee: 
Prof. Z Ghassemlooy (Northumbria Univ., UK) – 
Chairman 
Prof. A C Boucouvalas (Univ. of Peloponnese, Greece) –  
Symp. Secr. 
Prof. R A Carrasco (Newcastle Univ. UK) 
Dr. Erich Leitgeb (Graz Univ. Austria) – Local Organiser

Local Organising Committee: 
Dr. Erich Leitgeb (Local Organising Committee Chair) 
Prof. O. Koudelka (Professor) 
Dr U. Birnbacher 
J. Ritsch and P. Reichel (OVE) 
Dr J. Wolkerstorfer   
P. Schrotter 

National/International Technical Committee:
Dr M Ali (Oxford Brookes Univ. UK) 
Prof. E Babulak (American Univ. Girne, North Cyprus) 
Prof. P Ball (Oxford Brookes Univ. UK)  
Dr D Benhaddou (University of Houston, USA) 
Prof. J L Bihan (Ecole Nation. d'Ingen. de Brest, France) 
Dr K E Brown (Heriot-Watt Univ. UK)  
Prof. R A Carrasco (Newcastle Univ. UK) 
Dr J B Carruthers (Boston University, USA)
Prof.  F Castanie (INPT, France) 
Dr H Castel  (Inst. Natio. D. Télécommun., France) 
Dr L Chao (Nanyang Tech. Univ. Singapore)  
Prof. R J Clarke (Heriot-Watt Univ. UK) 
Dr M Connelly (Univ. of Limerick, Ireland)  
Prof. A Constantinides (Imperial College, UK)  
Prof. D Dietrich, (Vienna Univ. of Tech., Austria) IEEE
Austria Section Chair 
Dr D Dimitrov (Tech. Univ. of Sofia, Bulgaria) 
Dr S Dlay (Newcastle Univ. UK) 
Prof. Fu, Shan (Shanghai Jiaotong Univ., China)  
Dr. M Gebhart, (NXP, Gratkorn Austria) 
Dr M Giurgiu (Univ. of Cluj-Napoca, Romania) 
Dr. M Glabowski, (Poznan Univ. of Tech., Poland) 
Prof. Ch Grimm, (Vienna Univ. of Tech., Austria) 
Dr A. Inoue (NTT, Japan) 
Prof. L Izzo (Univ. of Napoli, Italy) 
Prof. G Kandus (IJS Ljubljana, Slovenia) 
Prof. K Kawashima (Tokyo Univ. TUAT, Japan) 
Prof. C Knutson (Brigham Young Univ., USA) 
Prof. G Kubin, (Graz Univ. of Tech., Austria 
Prof. K Liu (Reading Univ. UK)  
Dr M D Logothetis (Univ. of Patras, Greece) 
Prof. E Lutz, (DLR, Oberpfaffenhofen, Germany) 
Prof. M Matijasevic (FER Zagreb, Croatia) 
Prof. B Mikac (FER Zagreb, Croatia) 
Dr. W P Ng (Northumbria University, UK) 
Dr T Ohtsuki (Tokyo Univ. of Sci., Japan) 
Prof. F Ozek (Ankara Univ., Turkey) 
Prof. R Penty (Cambridge Univ. UK) 
Prof. W Pribyl, (Graz Univ. of Tech. Austria) 
Prof. J A Robinson (Univ. of  York, UK) 
Dr D Roviras (INPT, France) 
Prof. M Rupp, (Vienna Univ. of Tech., Austria) 
Dr. S. Sheikh Muhammad (Univ. of Eng. & Tech., 
Pakistan) 
Dr S Shioda (Chiba Univ. Japan) 
Dr J  Sodha (Univ. of West Indies, Barbados, W. Indies)
Dr I Soto (Santiago Univ. Chile)  
Dr U Speidel (Univ. of Auckland, Newzeland) 
Prof. M Stasiak (Poznan Univ. Poland) 
Dr L Stergioulas (Brunel Uni. UK)  
Prof. M Theologou (Nation. Tech. Univ. Athens, Greece) 
Prof. R. Vijaya (Indian Inst. of Tech., Bombay, India) 
Dr I Viniotis (N.Caroline State Univ.USA) 
Dr V Vitsas (TEI of Thessaloniki, Greece) 
Prof. R Weiß, (Graz Univ. of Tech., Austria) 
Dr P. Xiao (Queens Univ. UK) 
Prof. M N Zervas (Southampton Univ. UK) 

Following the success of the last event, and after 10 years, the CSNDSP steering 
committee decided to hold the next event at the Graz University, Austria. Graz was 
the 2003 cultural capital of Europe. CSNDSP, a biannual conference, started in 
UK ten years ago and in 2006 it was hold for the first time outside UK in 
Patras/Greece. CSNDSP has now been recognised as a forum for the exchange 
of ideas among engineers, scientists and young researchers from all over the 
world on advances in communication systems, communications networks, digital 
signal processing and other related areas and to provide a focus for future 
research and developments. The organising committee invites you to submit 
original high quality papers addressing research topics of interest for presentation 
at the conference and inclusion in the symposium proceedings. 

Papers are solicited from, but not limited to the following topics: 
� Adaptive signal processing
� ATM systems and networks
� Chip design for Communications  
� Communication theory 
� Coding and error control 
� Communication protocols 
� Communications for disaster 

management 
� Crosslayer design 
� DSP algorithms and applications
� E-commerce and e-learning 

applications
� Intelligent systems/networks
� Internet communications
� High performance networks
� Mobile communications, 

networks, mobile computing for e-
commerce

� Mobility management
� Modulation and synchronisation
� Modelling and simulation 

techniques
� Multimedia communications and 

broadband services
� Microwave Communications

� New techniques in RF-design and 
modelling 

� Network management & 
operation

� Optical communications
� Optical MEMS for lightwave 

networks
� RF/Optical wireless 

communications 
� Photonic Network
� Quality of service, reliability and 

performance modelling
� Radio, satellite and space 

communications 
� RFID & near field 

communications 
� Satellite & space communications 
� Speech technology
� Signal processing for storage
� Teletraffic models and traffic 

engineering
� VLSI for communications and 

DSP
� Wireless LANs and ad hoc 

networks
� 3G/4G network evolution
� Any other related topics

� Papers may be presented in the form of Oral presentation and/or Poster
� Contributions by MPhil/PhD research students are particularly encouraged.
Submission Dates: 

� Electronic submission by e-mail to: csndsp08@tugraz.at
� All papers will be refereed and published in the symposium 

proceeding.  Selected papers will be published in:  The Mediterranean 
Journals of Computers and Networks and Electronics and 
Communications, and possibly IET proceedings.

� A number of travel grants and registration fee waivers will be 
offered to the delegates.

Fees:  360.00 EURO, (Group Delegates of 3 persons: 760.00 Euro)
Includes: A copy of the Symposium Proceedings, Lunches, and Symposium 
Dinner on the 24th July.

CSNDSP’08 General Information
Contact: Dr. Erich Leitgeb - Local Organising Committee Chair 

- Institute of Broadband Communications, Graz University of Technology, A-
8010 Graz, Inffeldg. 12, Tel.: ++43-316-873-7442, Fax.: ++43-316-463697. 
Email: erich.leitgeb@tugraz.at,  Web-site: http://www.inw.tugraz.at/ibk

6th International Symposium on 
COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING (CSNDSP’08)

23-25 July 2008, Graz University of Technology, Graz, Austria
www.csndsp.com

Hosted by: Institute of Broadband Communications, Department of Communications and Wave Propagation
Sponsored by:

The Mediterranean Journals: 
- Computer & Networks
- Electronics & Communications

IEEE Communications  
Chapter - UK/RI  

First Call for Papers 

� Full Paper due:    27th  Jan. 2008 
� Notification of acceptance by:  1st April 2008 
� Camera ready paper due:   5th May 2008 



CALL FOR PAPERS
3DTV CONFERENCE 2008

THE TRUE VISION
CAPTURE, TRANSMISSION AND DISPLAY OF VIDEO

28-30 MAY 2008, HOTEL DEDEMAN, �STANBUL, TURKEY

General Co-Chairs:

U�ur Güdükbay, Bilkent University, TR

A. Aydn Alatan,
Middle East Technical University, TR

Advisory Board:

Jörn Ostermann,
Leibniz University of Hannover, DE

Aljoscha Smolic,
Fraunhofer Gesellschaft, DE

A. Murat Tekalp, Koç University, TR

Levent Onural, Bilkent University, TR

John Watson, University of Aberdeen, UK

Thomas Sikora,
Technische Universitaet Berlin, DE

Finance Chair:

Tark Reyhan, Bilkent University, TR

Publication Chair:

Tolga K. Çapn, Bilkent University, TR

Publicity Chairs:

Georgios Triantafyllidis,
Centre for Research & Technology, GR

Gözde Bozda� Akar,
Middle East Technical University, TR

Industry Liaison:

Ismo Rakkolainen, FogScreen, FI

Matt Cowan, RealD, USA

American Liaison:

Kostas Danilidis,
University of Pennsylvania, USA

Far East Liaison:

Kiyoharu Aizawa, University of Tokyo, JP

Special Sessions and 
Tutorials Chairs:

Philip Benzie, University of Aberdeen, UK

Atanas Gotchev,
Tampere University of Technology, FI

Webmasters:

Engin Türetken,
Middle East Technical University, TR

Ay�e Küçükylmaz,
Bilkent University, TR

Following the conference of 2007, the second 3DTV Conference will be held in Istanbul, Turkey 
in May, 2008. The aim of 3DTV-Con is to bring researchers from different locations together 
and provide an opportunity for them to share research results, discuss the current problems
and exchange ideas.

The conference involves a wide range of research fields such as capturing 3D scenery, 3D image 
processing, data transmission and 3D displays. You are cordially invited to attend 3DTV-Con 
2008 and submit papers reporting your work related to the conference themes listed below.

Conference Topics

3D Capture and Processing:
- 3D time-varying scene capture technology
- Multi-camera recording
- 3D photography algorithms
- Dense stereo and 3D reconstruction
- Synchronization and calibration of camera arrays
- 3D view registration
- Multi-view geometry and calibration
- Holographic camera techniques
- 3D motion analysis and tracking
- Surface modeling for 3D scenes
- Multi-view image and 3D data processing
- Integral imaging  techniques

3D Visualization:
- 3D mesh representation
- Texture and point representation
- Object-based representation and segmentation
- Volume representation
- 3D motion animation
- Stereoscopic display techniques
- Holographic display technology
- Reduced parallax systems
- Underlying optics and VLSI technology
- Projection and display technology for 3D videos
- Integral imaging  techniques
- Human factors

3D Transmission:
- Systems, architecture and transmission in 3D
- 3D streaming
- Error-related issues and handling of 3D video
- Hologram compression
- Multi-view video coding
- 3D mesh compression
- Multiple description coding for 3D
- Signal processing for diffraction and holographic

3DTV

3D Applications:
- 3D imaging in virtual heritage and virtual archaeology
- 3D teleimmersion and remote collaboration
- Augmented reality and virtual environments
- 3D television, cinema, games and entertainment
- Underlying Technologies for 3DTV
- Medical and biomedical applications
- 3D content-based retrieval and recognition
- 3D watermarking

Paper Submission
Contributors are invited to submit full papers electronically using the online submission 
interface, following the instructions at http://www.3dtv-con.org. Papers should be in Adobe 
PDF format, written in English, with no more than four pages including figures, with a font 
size of 11. Conference proceedings will be published online by IEEE Xplore.

Important Dates
Special sessions and tutorials proposals deadline: 14 December 2007 

Regular paper submission deadline: 11 January 2008
Notification of paper acceptance: 29 February 2008
Camera-ready paper submission deadline: 21 March 2008
Conference: 28-30 May 2008

Sponsors

3DTV Network 
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Middle East 
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Bilkent
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Institute of Electrical 
and Electronics 

Engineers

European 
Association for 

Signal and 
Image Processing

MPEG Industry 
Forum 


	1Call for Papers-4pt
	Guest Editors:

