
nsuring that digital
content is used for its
intended purpose after it
has been delivered to cus-

tomers often requires the ability to
track and identify entities involved in
unauthorized redistribution of multimedia
content. Digital fingerprinting is a technolo-
gy for enforcing digital rights policies whereby
unique labels, known as digital fingerprints, are
inserted into content prior to distribution. As illus-
trated in Figure 1, unique fingerprints are assigned
to each intended recipient. These fingerprints can
facilitate the tracing of the culprits who use their con-
tent for unintended purposes. To protect the content,
it is necessary that the fingerprints are difficult to
remove from the content. For multimedia content,
fingerprints can be embedded using conventional
watermarking techniques that are typically concerned
with robustness against a variety of attacks mounted
by an individual.

Guaranteeing the appro-
priate use of multimedia con-

tent, however, is no longer a
traditional security issue with a sin-

gle adversary. The global nature of
the Internet has brought adversaries

closer to each other. It is now easy for a
group of users with differently marked ver-

sions of the same content to work together
and collectively mount attacks against the fin-

gerprints. These attacks, known as multiuser col-
lusion attacks, provide a cost-effective method for

attenuating each of the colluders’ fingerprints. An
improperly designed embedding and identification
scheme may be vulnerable in the sense that a small
coalition of colluders can successfully produce a new
version of the content with no detectable traces.
Thus, collusion poses a real threat to protecting
media data and enforcing usage policies. It is desir-
able, therefore, to design fingerprints that resist col-
lusion and identify the colluders.

Min Wu, Wade Trappe, Z. Jane Wang, and K.J. Ray Liu
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In this ar ticle, we review some major design
methodologies for collusion-resistant fingerprinting of
multimedia and highlight common and unique issues
of different fingerprinting techniques. The goal is to
provide a broad overview of the recent advances in fin-
gerprinting for tracing and identifying colluders. The
article is organized as the follows: we first provide
background on robust data embedding, upon which
the multimedia fingerprinting system is built. We also
introduce the basic concepts of fingerprinting and col-
lusion and provide a discussion on the various goals
associated with fingerprint design and colluder tracing.
Detailed discussions are then provided on two major
classes of fingerprinting strategies, namely, orthogonal
fingerprinting and correlated fingerprinting, where the
latter involves the design of suitable codes that are
employed with code modulation to create the finger-
prints. Finally, we offer a unified view that covers
orthogonal fingerprints, coded fingerprints, and other
correlated fingerprints and conclude the article by
highlighting some areas for further investigation.

Robust Data Embedding
Fingerprinting multimedia requires the use of robust
data embedding methods that are capable of withstand-
ing attacks that adversaries might employ to remove
the fingerprint. Collusion-resistant fingerprinting also
requires that the fingerprints survive collusion attacks
and can identify colluders. Although there are many
techniques that have been proposed for embedding

information in multimedia signals [1], in the sequel we
will use the spread-spectrum additive embedding tech-
nique for illustrating the embedding of fingerprint sig-
nals into multimedia. Spread-spectrum embedding has
proven robust against a number of signal processing
operations (such as lossy compression and filtering) and
attacks [2], [3]. With appropriately chosen features and
additional alignment procedures, the spread-spectrum
watermark can survive moderate geometric distortions,
such as rotation, scale, shift, and cropping [4], [5].
Further, information theoretic studies suggest that it is
nearly capacity optimal when the original host signal is
available in detection [6], [7]. The combination of
robustness and capacity makes spread-spectrum embed-
ding a promising technique for protecting multimedia.
In addition, as we shall see in this article, its capability
of putting multiple marks in overlapped regions also
limits the effective strategies mountable by colluders in
fingerprinting applications.

Spread-spectrum embedding borrows ideas from
spread-spectrum modulation [8]. The basic process of
spread-spectrum embedding consists of four steps. The
first step is to identify and compute features that will
carry watermark signals. Depending on the application
and design requirements, the features can be signal
samples, transform coefficients (such as discrete cosine
transform (DCT) and discrete Fourier transform
(DFT) coefficients) or other functions of the media
content. Next, we generate a watermark signal and
tune its strength to ensure imperceptibility. Typically,

� 1. Using embedded fingerprinting for tracing users.
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we construct the watermark to cover a broad spectrum
as well as a large region of the content, resulting in a
watermark that resembles noise. A third step is to add
the watermark to the feature signal. Finally, we replace
the original feature signal with the watermarked version
and convert it back to the signal domain to obtain a
watermarked signal. The detection process for spread-
spectrum watermarks begins with extracting features
from a media signal in question. Then the similarity
between the features and a watermark is examined to
determine the existence or absence of the watermark in
the media signal. Typically, a correlation similarity
measure is used, often in conjunction with preprocess-
ing (such as whitening) and normalization [1].

A straightforward way of applying spread-spectrum
watermarking to fingerprinting is to use mutually
orthogonal watermarks as fingerprints to identify each
[11], [12]. (The orthogonality may be approximated
by using random number generators to produce inde-
pendent watermark signals for different users.) The
orthogonality allows for distinguishing the fingerprints
to the maximum extent. The simplicity of encoding
and embedding orthogonal fingerprints makes them
attractive to identification applications that involve a
small group of users. A second option for using spread-
spectrum watermarking is to employ code modulation.
Code modulation allows fingerprint designers to design
more fingerprints for a given fingerprint dimensionality
by constructing each user’s fingerprint signal as a linear
combination of orthogonal noiselike basis signals.

In the following sections we shall examine the effect
of collusion on multimedia fingerprints constructed
using orthogonal modulation and code modulation.
During a collusion attack, a group of colluders, who
have differently fingerprinted versions of the same con-
tent, examine their different copies in hopes of creating
a new signal that will no longer be tied to any of the
colluders. There are several types of collusion attacks.
One method is simply to synchronize the fingerprinted
copies and average them, which is an example of a lin-
ear collusion attack. Another collusion attack, referred
to as the copy-and-paste attack, involves users cutting
out portions of each of their media signals and pasting
them together to form a new signal. Other attacks may
employ nonlinear operations, such as taking the maxi-
mum or median of the values of corresponding compo-
nents of individual copies. We will present a detailed
discussion on linear and nonlinear collusion for orthog-
onal fingerprints since analytic study is more feasible,
though the same type of analysis can be applied to
coded and other correlated fingerprints.

It is worth mentioning that another class of collu-
sion attack, which is sometimes referred to as intracon-
tent collusion, may be mounted against fingerprints by
a single user by replacing each segment of the content
signal with another, seemingly similar segment from
different spatial or temporal regions of the content. As
an example, an adversary may produce an attacked sig-

nal by integrating information from consecutive frames
to remove watermarks from a video sequence [13].
Such intracontent collusion should be taken into
account in designing robust embedding. We will not
elaborate this issue in the current article. Interested
readers may refer to [13]–[15] for detailed discussions.

Regardless of how multiuser collusion is carried out,
the overall objective of the digital rights enforcer is
simple: capture the adversaries and stop the prolifera-
tion of fraudulent content. Different concerns arise
under different situations, however, and the finger-
printing system must be designed according to appro-
priate performance criteria. Possible goals for designing
the fingerprints are the following.
� Catch one: In this design scenario, the goal is to
design the fingerprints to maximize the chance of catch-
ing at least one colluder, while seeking to minimize the
likelihood of falsely accusing an innocent user. For this
desired goal, the set of performance criteria consists of
the probability of a false positive and the probability of a
false negative. From the detector’s point of view, a
detection approach fails when either the detector fails to
identify any of the colluders (a false negative) or the
detector falsely indicates that an innocent user is a col-
luder (a false positive). This criteria is particularly rele-
vant when providing evidence in a court of law.
� Catch many: The goal in this design scenario is to
capture as many colluders as possible, though possibly
at a cost of accusing more innocent users. For this
desired goal, the set of performance criteria consists of
the expected fraction of colluders that are successfully
captured and the expected fraction of innocent users
that are falsely placed under suspicion.
� Catch all: In this design scenario, the fingerprints
are designed to maximize the probability of capturing
all colluders, while maintaining an acceptable amount
of innocents being falsely accused. This arises when
the trustworthiness of the information recipients is of
such great concern that all users involved in the infor-
mation leak need to be identified. This set of perform-
ance criteria consists of measuring the probability of
capturing all colluders and an efficiency rate, which
describes the expected amount of falsely accused inno-
cents per colluder.

When designing collusion-resistant fingerprints, the
designer of a fingerprinting system should consider
how fingerprint detection will take place, the appropri-
ate strength for the fingerprint, and the computational
ef ficiency of the colluder detection scheme.
Additionally, the designer should consider whether or
not the original content is available during the detec-
tion phase of the fingerprinting application. We will
refer to nonblind detection as the process of detecting
the embedded watermarks with the assistance of the
original content and blind detection as the process of
detecting the embedded watermarks without the
knowledge of the original content. Nonblind finger-
print detection requires a method for recognizing the



IEEE SIGNAL PROCESSING MAGAZINE18 MARCH 2004

content from a database, which can often require con-
siderable storage resources. Blind detection allows for
distributed detection scenarios or the use of Web
crawling programs since it does not require vast stor-
age resources or have large computational costs associ-
ated with content registration.

Orthogonal/Independent
Fingerprinting and Collusion
Using orthogonal signals to represent different mes-
sages, or orthogonal modulation [9], is a popular tech-
nique for watermarking and naturally lends itself to
fingerprinting applications. In this section, we first
review linear and nonlinear collusion attacks on
orthogonal fingerprints and then introduce several
commonly used detection statistics in the literature for
identifying orthogonal fingerprints under collusion and
discuss techniques for improving the computational
complexity of colluder identification.

Linear and Nonlinear Collusion
on Independent Fingerprints
Linear Collusion
Linear collusion is one of the most feasible collusion
attacks against multimedia fingerprinting. When users
come together with a total of K differently fingerprint-
ed copies of the same multimedia content, these users
can simply linearly combine the K signals to produce a
colluded version. Since normally no colluder is willing
to take more of a risk than any other colluder, the fin-
gerprinted signals are typically averaged with an equal
weight for each user [10]–[12], [16], [17], as illustrat-
ed in Figure 2. Averaging reduces the power of each
contributing fingerprint. As the number of colluders
increases, the trace of each individual fingerprint
becomes weaker. In fact, the colluded signal can have
better perceptual quality in that it can be more similar
to the host signal than the fingerprinted signals are.

The collusion attack considered in [11] consists of
adding a small amount of noise to the average of K fin-
gerprinted documents, where the original document is
perturbed by the marking process to produce finger-
printed documents with a bounded distortion from the

original document. It was shown that O(
√

N / logN )

adversaries are sufficient to defeat the underlying water-
marks, where N is the total length of the fingerprint
signal. Similar results were also presented in [12]. In
[16], a more general linear attack than in [11] was con-
sidered, where the colluders employ multiple-
input/single-output linear shift-invariant (LSI) filtering
plus additive Gaussian noise to thwart the orthogonal
fingerprints. Under the assumption that all fingerprints
are independent and have identical statistical character-
istics, it was shown that the optimal LSI attack involves
each user weighting their marked document equally
prior to the addition of additive noise.

When the fingerprint is spread throughout the entire
host signal by such techniques as spread-spectrum
embedding and detected through some form of corre-
lation, the cut-and-paste collusion attack has an effect
that is similar to averaging collusion. In both cases, the
energy of each contributing fingerprint is reduced by a
factor corresponding to the amount of copies involved
in the collusion. A similar reduction phenomenon is
observed for the correlation statistics [24]. As an exam-
ple, if Alice contributes half of her samples to a cut-
and-paste collusion, the energy of Alice’s fingerprint in
the colluded copy is only half of her overall fingerprint
energy. As a result, the correlation of the colluded sig-
nal with Alice’s fingerprint is roughly half the correla-
tion of a noncolluded copy of Alice’s fingerprinted
signal with her fingerprint. Therefore, when consider-
ing spread-spectrum embedding, we may consider cut-
and-paste collusion as analogous to averaging collusion.

Nonlinear Collusion
Linear collusion by averaging is a simple and effective
way for a coalition of users to attenuate embedded
fingerprints. Averaging, however, is not the only form
of collusion attack available to a coalition of adver-
saries. In fact, for each component of the multimedia
signal, the colluders can output any value between the
minimum and maximum values that they have
observed, and have high confidence that the spurious
value they get is within the range of just-noticeable-
difference since each fingerprinted copy is expected to

have high perceptual quality.
Therefore, we next examine fami-
lies of nonlinear collusion attacks.

An important class of nonlinear
collusion attacks is based upon such
operations as taking the maximum,
minimum, and median of corre-
sponding components of the K col-
luders’ independent watermarked
copies [10], [18]. For simplicity in
analysis, nonlinear attacks are typi-
cally assumed to be performed in
the same domain of features as the
fingerprint embedding. The just-
noticeable difference (JND) from� 2. Model for collusion by averaging.
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human visual models [3] is used to control the energy
of the embedded fingerprints so as to guarantee their
imperceptibility. As in [18], a set of typical nonlinear
attacks are considered:
� Minimum/maximum/median attack: Under these
three attacks, the colluders create an attacked signal in
which each component is the minimum, maximum, and
median, respectively, of the corresponding components of
the K watermarked signals associated with the colluders.
� Minmax attack: Each component of the attacked signal
is the average of the maximum and minimum of the cor-
responding components of the K watermarked signals. 
� Modified negative attack: Each component of the
attacked signal is the difference between the median
and the sum of the maximum and minimum of the cor-
responding components of the K watermarked signals.
� Randomized negative attack: Each component of the
attacked signal takes the value of the maximum of the
corresponding components of the K watermarked sig-
nals with probability p , and takes the minimum with
probability (1 − p).

The effectiveness of different attacks were studied in
[18] based on two performance criteria: the probability
of capturing at least one colluder (Pd ) and the proba-
bility of falsely accusing at least one innocent user
(Pf p ). Since the colluded fingerprint components under
the minimum, maximum, and randomized negative
attacks do not have zero mean, preprocessing was
applied to remove the mean from the colluded copy. It
was observed that the overall performance under the
median or minmax attacks is comparable to that of the
average attack. Therefore, from the attacker’s point of
view, there is no gain in employing the median or min-
max attack compared to the average attack. On the
other hand, the effectiveness of collusion improves
under the minimum, maximum, and modified negative
attacks. The randomized negative attack was shown to
be the most effective attack, but it also introduces larg-
er, more perceivable distortion to the host signal than
other attacks. Colluders may also apply additional noise
after the nonlinear combining, as studied in [18] and
[19]. As the amount of distortion introduced by the
nonlinear combining increases, the amount of addition-
al noise that can be added while maintaining perceptual
constraints decreases.

Colluder Identification via
Independent Fingerprints
When collusion occurs, the content owner’s goal is to
identify the fingerprints associated with users who par-
ticipated in generating the colluded content. As we
mentioned earlier, blind detection is attractive in multi-
media fingerprinting systems employing distributed
resources. Detection performance is often lower in the
blind scenario than in the nonblind one, however, since
the host signal serves as a noise source in the blind
detection. (Note that there are other types of water-
marking schemes that do not suffer from interference

from unknown host signals [7], [20]. Their appropri-
ateness for fingerprinting and anticollusion capabilities
remain under investigation.) A forensic application
employing digital fingerprints should carefully consider
the tradeoff between detectability and resource usage. 

The problem of detecting colluders can be posed in
a hypotheses-testing framework [21] where fingerprints
are signals to be detected. For detecting a single finger-
print, three detection statistics, referred to as TN-, Z-,
and q-statistic, were proposed to measure the similarity
between the colluded observation and the original
embedded fingerprint [10], [22], [24]. All three tests
are correlation based, involving the correlation between
the multimedia test signal and the original fingerprints.
Their difference lies in their normalization. A high cor-
relation value implies a high likelihood that the corre-
sponding user was involved in the act of colluding to
form the test signal.

Efficient Detection of Independent Fingerprints
One potential problem with orthogonal modulation is
the computational complexity associated with estimat-
ing which user’s watermark is present when the total
number of users is large [2], [23]. This is because the
classical method for detection employs a bank of
matched filters that correlate the test signal against
each fingerprint. The number of correlations is thus
proportional to the number of users. For a large group
of users, this leads to significant detection complexity
and bookkeeping resources.

To facilitate multimedia forensic systems employing
distributed resources, where the detectors are likely to
have limited computational capabilities, it is essential to
cut down the amount of correlations used. To improve
the computational ef ficiency in detection for an
orthogonal fingerprinting system, a recursive detection
structure was explored in [24]. The underlying motiva-
tion comes from the classical problem of finding a
heavy coin among n coins, of which n − 1 are identical.
One solution to this problem is to break the coins into
two complementary sets of the same size and weigh
these sets. Upon finding the heavier set of coins, the
process repeats until ultimately the heavy coin is identi-
fied. This idea was employed to identify a single collud-
er. Denote by S = {w1, . . . , wv} the set of orthogonal
fingerprints, and define the sum of A by
SUM(A) = ∑

j∈ J wj , where J is an index set for A .
The algorithm starts by breaking S into two comple-
mentary subsets, S0 and S1, and correlates the test sig-
nal with SUM(S0) and SUM(S1), respectively. The
colluder’s fingerprint should belong to the subset yield-
ing a larger correlation value. The algorithm then iter-
ates by breaking that subset into smaller subsets, and
correlating the test signal with the sum of the finger-
prints from these smaller subsets. The idea can be
extended to identify K colluders, where at each itera-
tion the test signal is correlated against both SUM(S0)

and SUM(S1). If any correlation statistic is above a



IEEE SIGNAL PROCESSING MAGAZINE20 MARCH 2004

threshold then we further decompose the correspon-
ding set. The algorithm is described via a binary tree, as
depicted in Figure 3.

In the recursive detector, each internal node corre-
sponds to two correlations. In the ideal scenario where
each correlation truthfully reveals whether a colluder is
present or not, the amount of correlations needed for
the K-colluder case can be shown to be
O(K log(n/K )), where n is the total amount of users
to which content is being distributed. The
O(K log(n/K )) complexity is a significant computa-
tional improvement over conventional matched filter-
ing. While the ideal case of the recursive algorithm is
closely related to tree-based searching algorithms and
group testing [25], [26], it should be noted that identi-
fying colluders involves randomness, which raises issues

not present in tree-based searching. In particular, the
intermediate decisions made at each node of the algo-
rithm are not guaranteed to be truthful. This is partly
due to the decrease in the detection signal-to-noise ratio
when correlating a test signal with the sum of a poten-
tially large number of fingerprints. Preliminary analysis
has been presented in [24], where it was found that at
low watermark-to-noise ratio (WNR) corresponding to
blind detection scenarios, the bound on the amount of
correlations needed in the recursive detector is above
the baseline amount of correlations needed for simply
correlating with each of the fingerprint waveforms. At
higher WNR, which corresponds to nonblind detection
scenarios, however, the bound guarantees a reduced
number of correlations.

Detector-Oriented Model for
Independent Fingerprinting
A different perspective on collusion
for multimedia was presented in
[27] involving devices for media
playing. There, the authors proposed
a dual watermark/fingerprint system
that allows the use of dif ferent
watermark signals in embedding and
extraction. In their system, a water-
mark conveying access and usage
policies is embedded in the multime-
dia content. Different users’ media
players have different variations of
the watermark (known as the water-
mark detection keys) built in. Each
media player has a watermark detec-
tor that correlates its detection key
with marked content in detection.
Each detection key is the sum of a
scaled version of the watermark as
used by the embedder and a strong,
independent Gaussian random vec-
tor that serves as a digital finger-
print. When an attacker breaks into
one device, obtains the detection key
inside, and subtracts the key from
the watermarked content, not only
will the watermark not be complete-
ly removed from the attacked copy
but also a fingerprint signal will be
inserted in the attacked copy. This
allows one to design a fingerprint
detector to examine the attacked sig-
nal, correlate it with suspected fin-
gerprints, and decide whether and
which device is compromised. If
attackers purchase multiple devices,
break into them to get the associated
keys, and average the attacked copies
to generate a colluded signal, the
identities of the devices involved can

� 3. Detection trees for identifying colluders using the recursive detector with orthogonal
fingerprints. The fingerprints of colluders are indicated by green boxes Uj. “TN | U?”
denotes the detection statistics from correlating the test image with the sum of the finger-
prints U?. The true colluders are indicated by yellow boxes.
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be identified. This receiver-end fingerprinting can be
modeled in a similar way to the traditional orthogonal
fingerprinting. Interested readers may find quantitative
analysis of the collusion resistance issues and discussions
on related problems of segmentation and key compres-
sion in [27].

Coded Fingerprinting
In the previous section, we introduced a conceptually
simple strategy for fingerprinting through orthogonal
signals. We saw that the complexity of detection can be
a concern for orthogonal fingerprints. Another problem
with orthogonal fingerprinting arises when examining
the energy reduction of the fingerprint signals during
collusion. Under averaging collusion the reduction is
significant and on the same order as the number of col-
luders. Further, the maximum number of users that can
be supported by an orthogonal fingerprinting system is
equal to the dimension of the fingerprint. In many mul-
timedia distribution applications this limits the amount
of customers that content can be distributed to.

One approach to counteract the energy reduction
due to collusion is to introduce correlation between
the fingerprints. When colluders combine their finger-
prints, positively correlated components of the finger-
prints do not experience as significant an energy
reduction. Further, by introducing correlation, one can
introduce dependence among the fingerprints and,
thus, have more fingerprints than the dimensionality of
the fingerprints. The challenge is to design these fin-
gerprints so that they have good anticollusion proper-
ties. One can construct these fingerprints by using code
modulation [8]. Then the task is to design the codes so
that the correlations are strategically introduced into
the different fingerprints to allow for accurate identifi-
cation of the contributing fingerprints involved in a
collusion attack. Typically, the codes are binary codes,
though recent efforts have explored real-valued code
constructions [28].

The Marking Assumption and
Collusion-Secure Fingerprints
An early work on designing collusion-resistant binary
fingerprint codes was presented by Boneh and Shaw in
1995 [29], which primarily considered the problem of
fingerprinting generic data that satisfy an underlying
principle referred to as the marking assumption. In this
work, a fingerprint consists of a collection of marks,
each of which is modeled as a position in a digital
object and can take a finite number of states. A mark is
considered detectable when a coalition of users does
not have the same mark in that position, as illustrated
in Figure 4. The marking assumption states that unde-
tectable marks cannot be arbitrarily changed without
rendering the object useless; however, it is considered
possible for the colluding set to change a detectable
mark to any state. Under this collusion framework,
Boneh and Shaw used hierarchical design and random-

ization techniques to construct c-secure codes that are
able to capture one colluder out of a coalition of up to
c colluders with high probability.

The construction of c-secure code involves two main
stages: 1) the construction of a base code and 2) the
composition of the base code with a outer code to
improve the efficiency when accommodating a large
number of users.

In the first stage, we start with a primitive binary
code that consists of n possible codewords of length
n − 1. For the mth codeword, the first (m − 1) bits are
0 and the rest are 1. An example of the trivial codes for
n = 4 users A, B, C, and D is shown in Figure 5 (Step
I). If we assign this code to n users, we can see that
everyone except user A has a “0” as the first bit, and
everyone except the user D has “1” as the last bit. Now,
suppose a fingerprint collusion occurs in which the first
m − 1 users are not involved but the m th user is
involved. According to the marking assumption, by
inspecting the primitive code, the colluders will not be
able to detect the first m − 1 bits; hence, the first m − 1
bits will remain “0” after collusion. The colluders will
detect the fact that the mth bit of their fingerprints
don’t agree. Colluders may then alter this bit to whatev-
er they choose—either a 0 or a 1. If the detector
observes that the first m − 1 bits are 0 and the mth bit
is a 1, then we can conclude that User m was involved
in the collusion. We sequentially check whether this
holds for m = 1, 2, . . . , n, and if m0 is the first value for
m passing this test, we know with high confidence that
user m0 is involved in collusion.

We note that there is no guarantee that the colluders
will switch the bit to a “1,” which prompts the need of
some method to encourage a “1” to show up during

� 4. Illustration of the marking assumption.
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collusion. This is accomplished by repetition and per-
mutation techniques. More specifically, for each bit of
the primitive code, we form a block by replicating that
bit d times, arriving at a code of (n − 1) code blocks
for a total length of (n − 1)d . We denote this code as
�0(n,d). Extending the above example, we have the
�0(4, 3) code shown in Figure 5 (Step II), where
d = 3. When fingerprinting digital data with a code-
word, each bit is put in a location specified by a secret
permutation table that is known only to the fingerprint
creator and detector. Repetition and permutation help
hide which position of the digital object encodes which
fingerprint bits. In the example in Figure 5 (Step II),
the first six bits before permutation for A have the same
value, as do C and D. Later, the bit permutation is per-
formed as shown in Figure 5 (Step IV). When colluders
having A, C, and D, respectively, come together to col-
lude, they observe six positions with different values
among the three of them. But since each of them has
the same value at all six positions, they would not know
which three out of the six bits correspond to the first
three bits before permutation and which to the second
three bits. As a result, they cannot alter the underlying
�0(4, 3) code at will. Based on the principle that every
colluder should contribute an equal share to the col-
luded data, some of the six bits would be set to “1”
and others to “0.” A detector starts from the first block
and examines each block in a block-by-block manner,

which is analogous to the bit-by-bit examination of the
primitive code discussed above. The number of “1”s
per code block is used as an indicator of a user’s
involvement in collusion.

In the second stage, we use the code obtained in the
first stage as a building block and combine it with a sec-
ond codebook. We construct a second codebook of N
codewords over an alphabet of size n, where each code-
word has length L . The N codewords are chosen inde-
pendently and uniformly over the nL possibilities. We
call this code C(L ,N ). For example, one random code
C(5, 7) over an alphabet n = 4 is shown in 
Figure 5 (Step III). Next, we substitute each of the n
alphabets in the code C(L ,N ) by �0(n,d) and arrive at
a binary code containing N possible codewords of
length L (n − 1)d . This substitution allows us to first
apply the collusion identification algorithm mentioned
earlier on each of the L components using the first
codebook �0(n,d), then find the best match in the sec-
ond codebook to determine a likely colluder. Finally,
each of the blocks of the codeword are permuted before
being inserted into the data. For example, using the
above code C(5, 7), we would be able to support 
seven users, and the codeword for the first user is shown
in Figure 5 (Step IV). By choosing the code parameters
appropriately, we can catch one colluder with high
probability and keep the probability of falsely accusing
innocents low. The construction that Boneh and Shaw

� 5. Construction procedure and examples of collusion-secure fingerprint codes.
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arrived at gives a code length of O(log4 N log2(1/ε))

for catching up to log N users out of a total of N users
with error probability ε < 1/N .

The construction strategies of Boneh–Shaw’s code
offers insight into fingerprinting both bitstreams and
other data for which the each bit or unit of a finger-
print is marked in a nonoverlapped manner. An
improvement was introduced in [30] to merge the low-
level code with the direct sequence spread-spectrum
embedding for multimedia and to extend the marking
assumption to allow for random jamming. While the 
c-secure fingerprint codes were intended for objects
that satisfy the marking assumption, we note that mul-
timedia data have very different characteristics from
generic data, and a few fundamental aspects of the
marking assumption may not always hold when finger-
printing multimedia. For example, different “marks” or
fingerprint bits can be embedded in overlapped regions
of an image through spread-spectrum techniques, and
such “spreading” can make it impossible for attackers
to manipulate individual marks at will. As a result, such
collusion models as linear collusion by averaging
become more feasible for multimedia fingerprints, and
this has a critical impact on the design of fingerprint
codes. It is also desirable to capture as many colluders
as possible, instead of only capturing one. Recent
research in [17] explored these directions and jointly
considered the encoding, embedding, and detection of
fingerprints for multimedia. A new class of structured
codes, known as anticollusion codes (ACC), has been
proposed that uses combinatorial theory that are
intended to be used with spread-spectrum code modu-
lation. Several colluder identification algorithms for
these fingerprint codes were designed and the perform-
ance trade-offs were examined [24]. Next, we will take
a closer look at this fingerprinting strategy.

Combinatorial Design-Based
Anticollusion Fingerprinting
Both encoding and embedding issues should be taken
into consideration when designing fingerprints for mul-
timedia that can survive collusion and identify collud-
ers. Since it is desirable to design the fingerprints using
as few underlying basis signals as possible, we approach
the design of collusion-resistant fingerprints using code
modulation [8]. The fingerprint signal for the j th user,
wj , is constructed using a linear combination of a total
of v orthogonal basis signals {ui }

wj =
v∑

i=1

b i j ui . (1)

Here the coefficients {b i j }, representing the fingerprint
codes, are constructed by first designing codevectors
with values {0, 1}, and then mapping them to {±1}.

Anticollusion codes can be used with code modula-
tion to construct a family of fingerprints with the ability
to identify colluders [17]. An anticollusion code is a
family of codevectors for which the bits shared between

codevectors uniquely identifies groups of colluding
users. ACC codes have the property that the composi-
tion of any subset of K or fewer codevectors is unique.
This property allows for the identification of up to K
colluders. A K-resilient AND anticollusion code (AND-
ACC) is such a code where the composition is an ele-
ment-wise AND operation.

It has been shown that binary-valued AND-ACC
can be constructed using balanced incomplete block
designs (BIBD) [17]. The theory of block designs is a
field of mathematics that has found application in the
construction of error-correcting codes and the design
of statistical experiments [31]. The corresponding
(k − 1)-resilient AND-ACC codevectors are assigned as
the bit complements of the columns of the incidence
matrix of a (v, k, 1) BIBD. In this case, the codevectors
are v-dimensional, and we are able to represent
n = (v2 − v)/(k2 − k) users with these v basis vectors.
Therefore, for a given resilience (k − 1), only O(

√
n)

basis vectors are needed to accommodate n users.
There are systematic methods for constructing infinite
families of BIBDs [31], [32], which thus provide a vast
supply of ACC.

Let us now study a simple example of ACC codes.
The columns of the following matrix C represent the
codevectors of an ACC built from a (7, 3, 1)-BIBD

C =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1




�
w1 = −u1 − u2 + u3 − u4 + u5 + u6 + u7,

w2 = −u1 + u2 − u3 + u4 + u5 − u6 + u7,

.

.

.

.

w7 = +u1 + u2 + u3 − u4 − u5 − u6 + u7.

Upon examining the code matrix C, we see that
the logical AND of any two or fewer codevectors is
distinct from the logical AND of any other two or
fewer codevectors. When two watermarks are aver-
aged, the locations where the corresponding AND-
ACC agree and have a value of one identify the
colluding users. For example, the w1 and w2 shown
above represent the watermarks for the first two
columns of the above code, where we use the antipodal
form and map “0” to “−1.” The average (w1 + w2)/2
has coefficient vector (−1, 0, 0, 0, 1, 0, 1). The fact that
a “1” occurs in the fifth and seventh location uniquely
identifies user 1 and user 2 as the colluders. Another
example employing an ACC from a (16, 4, 1)-BIBD
on the Lenna image is shown in Figure 6, where the
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code is capable of capturing up to three colluders.
Again, the set of positions of the sustained 1s is unique
with respect to the colluder set and is therefore used to
identify colluders. For example, only users 1 and 4 can
produce a set of sustained 1s at the fifth–tenth and
14th–16th code bits; and only users 1, 4, and 8 can
produce a set of  sustained 1s at the fifth, sixth, eighth,
tenth, 14th, and 16th code bits.

It is desirable to shorten the code length to squeeze
more users into fewer bits since this would cut down
on the storage and bookkeeping resources used to
maintain the orthogonal basis vectors. Further, it will
also distribute the fingerprint energy over fewer basis
vectors and thereby decrease errors in the detection
process. A useful metric for evaluating the efficiency β
of an AND-ACC for a given collusion resistance is
β = n/v, which describes the amount of users that can
be accommodated per basis vector. AND-ACCs with a
higher β are better. For (v, k, λ)-BIBD AND-ACC
codes, their efficiency is β = λ(v − 1)/(k2 − k) ≥ 1.

Another attempt at using the theory of combinatorics
to design fingerprints was made by [33], where projec-
tive geometry was used to construct their codes. In
terms of the β value defined above, the fingerprinting
scheme employing BIBD ACC is more efficient from a
coding perspective as it requires fewer basis signals to
accommodate the same amount of users. The higher
efficiency of the BIBD ACC fingerprinting scheme has,
to some extent, benefited from incorporating knowledge
about the embedding and detection processes during
code design. By incorporating a model of the detector, it
is possible to provide as compact representation as possi-
ble for collusion resistant fingerprint codes. The BIBD
construction assumes that the detection of code bits in
the presence of collusion can be modeled as a logical
AND operation. One avenue for further exploration

would be to investigate other models for the detector,
such as using majority logic.

Other code construction schemes, such as those
based on different combinatorial designs, can lead to
ACC codes with different characteristics and may
potentially allow for content distributors to be able to
market valuable content to a larger customer base. It is
also possible to obtain useful insights from further
exploring the building blocks in the Boneh–Shaw’s
code construction [29] and apply appropriate modula-
tion to fingerprint multimedia. The existing construc-
tion described in [29] is limited to a collusion
resistance of K ≤ log n and is designed to trace one
colluder among K colluders. Their construction has
code length O(log4 n log2(1/ε)), where ε < 1/n is the
decision error probability. This code length is consider-
ably large for small error probabilities and practical n
values. An interesting avenue to explore would be how
to reduce the code length by combining insightful
philosophies from both Boneh–Shaw’s code and codes
based on combinatorial designs. These hybrid codes
could provide additional latitude in searching for a fam-
ily of efficient and effective ACC codes.

Colluder Identification
There are many potential colluder identification schemes.
Due to the discrete nature of the ACC fingerprinting
code, the maximum likelihood (ML) approach [8] usual-
ly involves the enumeration of all possible parameter val-
ues, which leads to prohibitively high computational
requirements. Therefore, computationally efficient alter-
natives to the ML algorithm are desirable.

Three detection schemes have been recently pro-
posed as suitable candidates that may be applied with
AND-ACC [24]. The first scheme is a hard-threshold-
ing detector, which starts with comparing TN (i), the

correlation-based detection statistic
for each bit, to a threshold τ to
decide the observed code bit. If the
threshold is chosen appropriately,
the extracted code approximates
the AND operations of the codes
from the colluders. We then com-
pare the decoded bits with the
ACC codevectors and use the
detected “1” bits to deduce which
users have been involved in collu-
sion. The second approach is a soft-
thresholding scheme, called the
adaptive sorting detector, where
the descendingly ordered detection
statistics TN (i)s are iteratively used
to narrow down the set of suspect-
ed users until the likelihood func-
tion stops increasing. The third
scheme that was introduced,
known as sequential detector, dif-
fers from the previous two algo-

� 6. 16-bit codevectors from a (16, 4, 1)-ACC code for user 1, 4, and 8, and the finger-
printed 512 × 512 Lenna images for these three users, respectively. The code can capture
up to three colluders. Shown here is an example of two-user collusion by averaging (user
1 and 4) and an example of three-user collusion by averaging. The two codes indicated
by arrows in the table uniquely identify the participating colluders.
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User 4:

User 8:
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User (1,4,8) Average:

After Thresholding:
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rithms in that it attempts to directly estimate the set
of colluders from the distributional behavior of the
detection statistics instead of first performing decod-
ing before identifying colluders from the decoded fin-
gerprint code. As indicated by the
name, the sequential detector iden-
tifies colluders one by one using a
likelihood criteria. These three
detectors have much lower compu-
tational complexity than the ML
approach. Simulation results of
these detectors under a three-col-
luder scenario are presented in
Figure 7, where fingerprints based
on a (16, 4, 1) BIBD are
employed. It is observed that the
use of a higher threshold in the
hard-thresholding scheme is able to
capture more colluders, but also
places more innocent users falsely
under suspicion. Compared to the
hard-thresholding scheme with
τ = 0.9E (TN ), the soft-threshold-
ing scheme and the sequential
scheme capture a larger fraction of
the colluders at all WNRs, while for
a large range of WNRs they place
fewer innocents under suspicion.
Overall, the sequential detector
provides the most promising bal-
ance between capturing colluders
and placing innocents under suspi-
cion. From the code perspective,
this performance improvement can
be viewed as using not only sus-
tained 1 bits but also sustained 0
bits to help identify colluders.

Conclusions
In summary, we have discussed the
recent advances in multimedia fin-
gerprinting for colluder identifica-
tion, reviewed the tradeoffs and
performance criteria, and examined
a few embedded fingerprint strate-
gies. Revisiting the formulation of
fingerprint coding and modulation
in (1), we can arrive at a unified
framework that covers orthogonal
fingerprints, coded fingerprints, and
other correlated fingerprints. Under
this unified formulation, a different
sequence {b1 j , b2 j , . . . , bvj } is
assigned for each user j . Its matrix
representation, B = {b i j }, has a dif-
ferent structure for different finger-
print strategies. An identity matrix
for B represents orthogonal finger-

printing wj = uj , where each user is identified with an
orthogonal basis signal. The simple structure for
encoding and embedding orthogonal fingerprints
makes it attractive in identification applications that

� 7. Colluder identification performance of four different detectors on ACC-based finger-
printing. The horizontal axis indicates watermark-to-noise-ratio (WNR); the vertical axis
indicates (a) the  fraction of colluders correctly captured  and (b) the fraction of innocent
users that are put under suspicion.

Fr
ac

tio
n 

C
ap

tu
re

d

WNR (dB)

Sequential

Sorting

Hard: τ = 0.9E(TN)

Hard: τ = 0.7E(TN)

1.0

0.8

0.6

0.9

0.7

0.3

0.4

0.2

0.5

–25 –20 –10–15 –5 0

In
no

ce
nt

 F
ra

ct
io

n

WNR (dB)

(a)

(b)

Sequential

Sorting
Hard: τ = 0.9E(TN)

Hard: τ = 0.7E(TN)

0.25

0.15

0.05

0.20

0.10

0.00
–25 –20 –10–15 –5 0



IEEE SIGNAL PROCESSING MAGAZINE26 MARCH 2004

involve a small group of users. To use v orthogonal
basis signals to represent more than v users, correla-
tions between different users’ fingerprints must be
introduced. One way to construct a corresponding B
matrix is to use binary codes. The c-secure code and
the BIBD ACC code discussed in the previous section
are two examples. In more general constructions,
entries of B can be real numbers [28]. The key issue is
to strategically introduce correlation among different
fingerprints to allow for accurate identification of any
single fingerprint as well as the contributing finger-
prints involved in forming a colluded fingerprint signal.

We hope that the work reviewed in this article and
the general framework presented will encourage
researchers from different areas to further explore col-
lusion-resistant fingerprinting for digital rights man-
agement of multimedia. As we noted throughout,
there are many research directions that remain unex-
amined. As an example, one key problem in the area of
independent fingerprints involves developing distrib-
uted detection agents. The challenge here lies in devel-
oping computationally efficient detection algorithms
that are capable of robustly identifying colluders at the
low WNR associated with blind detection scenarios.
Similarly, there are many suitable directions to explore
for collusion-resistant fingerprints built using code
modulation. The construction of collusion-resistant
fingerprints using nonbinary codes, or that involves
different assumptions about the detection process, are
interesting avenues to be explored. Additionally, the
discussion has focused primarily on fingerprints
embedded using spread-spectrum techniques.
Exploring the effect that collusion has upon other
embedding technologies is an important area for fur-
ther investigation. We envision that insights from mul-
tiple disciplines—such as signal processing, coding,
combinatorics, communications, and information the-
ory—will help improve our understanding of the capa-
bility and limitations of fingerprinting, improve our
fingerprint designs, and ultimately lead to systems with
better colluder-tracing performance. Overall, appropri-
ately designed fingerprints can be a useful and proac-
tive forensic tool that brings user accountability into
multimedia information management by providing evi-
dence and a means to trace the culprits of unautho-
rized information dissemination.
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