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ABSTRACT

Digital fingerprinting is an important tool in multimedia foren-
sics to trace traitors and protect multimedia content after decryp-
tion. This paper addresses the enforcement of digital rights when
distributing multimedia over heterogeneous networks and studies
the scalable multimedia fingerprinting systems in which users re-
ceive copies of different quality. We investigate the traitor tracing
capability of such scalable fingerprinting systems, in particular, the
robustness of the embedded fingerprints against multi-user collu-
sion attacks. Under the fairness constraints on collusion that all
attackers share the same risk of being captured, we analyze the
maximum number of colluders that the fingerprinting systems can
withstand, and our results show that multimedia fingerprints can
survive collusion attacks by a few dozen colluders.

1. INTRODUCTION

With widespread distribution of multimedia, it is critical to se-
cure multimedia content and enforce intellectual property rights.
A fundamental problem in multimedia security and forensics is to
identify entities involved in the illegal usage of multimedia. Dig-
ital fingerprinting embeds unique identification information in the
content before distribution and can be used in traitor tracing.

The uniqueness of each distributed copy enables multiple at-
tackers to collect several fingerprinted copies of the same content,
mount attacks together, and remove the embedded fingerprints [1].
Such a collusion attack poses serious threats to digital fingerprint-
ing systems. To enable traitor tracing and support multimedia
forensics, it is important for the digital rights enforcer to under-
stand the collusion attacks, analyze the collusion resistance of dig-
ital fingerprinting systems, and develop anti-collusion fingerprint
codes. This paper focuses on the collusion resistance analysis that
provides foundations for the collusion secure fingerprint design.

Multi-user collusion was modeled as averaging attack followed
by an additive noise in [2], and it was shown that O(

p
N/ log N)

colluders were enough to break the fingerprinting systems where
N is the fingerprint length. Similar results were provided in [3].
The work in [4] evaluated the maximum number of colluders that
digital fingerprinting systems can withstand and investigated the
relationship between the collusion resistance and the fingerprint
length, the total number of users, and the system requirements.

Most prior work on collusion attacks and fingerprint design for
multimedia assumed that users receive copies of the same quality.
In practice, scalability is often required during video transmission
to address the heterogeneity of network and that of the end users.
The impact of scalability on fingerprinting systems was studied
in [5]. Their work analyzed the effectiveness of collusion attacks
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under the constraints that all colluders have equal probability of
being detected. Based on the work in [5], this paper investigates
the resistance of scalable fingerprinting systems against fair collu-
sion attacks and analyzes the maximum number of colluders that
are necessary to undermine the scalable fingerprinting systems.

This paper is organized as follows. We begin in Section 2
with the introduction of the scalable video coding systems and the
scalable fingerprinting system model that are used in this paper.
Section 3 analyzes the collusion resistance of the scalable finger-
printing systems. Section 4 shows the simulation results, and con-
clusions are drawn in Section 5.

2. SYSTEM MODEL

2.1. Temporally Scalable Video Coding Systems

To achieve scalability, we use layered video coding and decompose
the content into non-overlapping parts of different priority. The
base layer contains the most important information of the video
and is received by all users. The enhancement layers gradually
refine the reconstructed sequence and are only received by users
with sufficient bandwidth. Without loss of generality, we consider
a temporally scalable video coding system with three-layer scala-
bility: the base layer has top priority, the enhancement layer 1 has
medium priority, and the enhancement layer 2 has low priority.
Same as in [5], we consider a simple implementation of the tem-
poral scalability and encode different frames in different layers.1

Define Fb, Fe1 and Fe2 as the sets containing indices of the frames
that are encoded in the base layer, enhancement layer 1 and en-
hancement layer 2, respectively. For example, Fb = {1, 5, 9, · · · },
Fe1 = {3, 7, 11, · · · } and Fe2 = {2, 4, 6, · · · }.

Define F (i) as the set containing the indices of the frames
that user u(i) receives from the content owner. We further define
Ub4={u(i) : F (i) = Fb} as the subgroup of users who receive the

base layer only; Ub,e14={u(i) : F (i) = Fb ∪Fe1} is the subgroup
of users who receive the base layer and enhancement layer 1; and

Uall4={u(i) : F (i) = Fb ∪ Fe1 ∪ Fe2} is the subgroup of users
who receive all three layers. M = |Ub|+ |Ub,e1|+ |Uall| is the
total number of users, where |A| returns the size of the set A.

2.2. Digital Fingerprinting System Model

A digital fingerprinting system usually contains three parts: finger-
print embedding, collusion attacks, and fingerprint detection.

Fingerprint Embedding With the above temporally scalable cod-

1For example, with MPEG-2 video coding, the base layer may contain
all the I frames, the enhancement layer 1 contains all the P frames, and the
enhancement layer 2 contains all the B frames.
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Fig. 1. The intra-group and inter-group collusion attacks.

ing systems, for the jth frame in the video represented by a vector
Sj of length Nj , and for each user u(i) who subscribes to frame
j, the content owner generates a unique fingerprint W(i)

j of length

Nj . The fingerprinted frame j that will be distributed to u(i) is
X

(i)
j = Sj + JNDj · W(i)

j . JND here is the just-noticeable-
difference from human visual models [6] to control the energy of
the embedded fingerprints. Finally, the content owner transmits to
u(i) all the fingerprinted frames that he subscribes to.

In this paper, we use Gaussian distributed fingerprints and gen-
erate {W(i)

j } from distribution N (0, σ2
W ). To be robust against

intra-content collusion attacks by a single adversary, similar to [7],
in each distributed copy, we embed correlated fingerprints into ad-
jacent frames and let the correlation depend on the similarity be-
tween the two host frames. In this paper, fingerprints for different
users are generated independently.

Collusion Attacks During collusion, the colluders collect all the
received fingerprinted copies and apply multi-user collusion to at-
tenuate the embedded fingerprints. It was shown in [4] that if
all collusion attacks generate colluded copies of the same quality,
nonlinear collusion attacks have approximately the same perfor-
mance as the averaging based collusion. Thus, we only consider
averaging based collusion in this paper.

Given that the attackers receive copies of different quality due
to network heterogeneity, this paper assumes that the colluders
wish to generate colluded copies of high resolution and good qual-
ity under the constraints that every colluder has the same probabil-
ity of being captured. Following the work in [5], the colluders first
divide themselves into three non-overlapping subgroups:

• SCb4={i : F (i) = Fb} contains the indices of colluders
who receive the base layer only;

• SCb,e14={i : F (i) = Fb ∪ Fe1} contains the indices of
colluders who receive base layer and enhancement layer 1;

• and SCall4={i : F (i) = Fb ∪ Fe1 ∪ Fe2} contains the
indices of colluders who receive all three layers.

Define Kb, Kb,e1, and Kall as the number of colluders in sub-
groups SCb, SCb,e1, and SCall, respectively. Then, the colluders
apply the intra-group collusion attacks:

• For each frame j ∈ Fb that they received, the colluders in
the subgroup SCb generate Zb

j =
P

i∈SCb X
(i)
j /Kb.

• For each frame j ∈ Fb ∪Fe1 that they received, the collud-
ers in SCb,e1 generate Zb,e1

j =
P

i∈SCb,e1 X
(i)
j /Kb,e1.

• For each frame j ∈ Fb ∪ Fe1 ∪ Fe1 that they received, the
colluders in SCall generate Zall

j =
P

i∈SCall X
(i)
j /Kall.

Define F c as the set containing indices of the frames in the col-
luded copy {Vj}. F c = Fb, F c = Fb ∪ Fe1, and F c = Fb ∪
Fe1 ∪ Fe2 correspond to the three scenarios where {Vj} has the
lowest, medium, and highest resolutions, respectively. Finally, the
colluders apply the inter-group collusion as shown in Figure 1:

• For each frame j ∈ Fb in the base layer, Vj = β1Z
b
j +

β2Z
b,e1
j + β3Z

all
j + nj , where β1 + β2 + β3 = 1 and

0 ≤ β1, β2, β3 ≤ 1. nj is an additive noise.

• If Fe1 ⊂ F c and the colluded copy contains frames in the
enhancement layers, then for each frame j ∈ Fe1 in the
enhancement layer 1, Vj = α1Z

b,e1
j +α2Z

all
j +nj , where

0 ≤ α1, α2 ≤ α1 + α2 = 1 and nj is an additive noise.

• If Fe2 ⊂ F c and the colluded copy contains all the frames,
then for each frame j ∈ Fe2 in the enhancement layer 2,
Vj = Zall

j + nj , where nj is an additive noise.

To address the fairness issue during collusion and ensure that
all attackers have the same risk of being detected, Table 1 lists
the constraints and the selection of the parameters, F c, {βk}, and
{αl}, to achieve the fairness of collusion [5]. In Table 1, Nb, Ne1,
and Ne2 are the lengths of the fingerprints embedded in the base
layer, enhancement layer 1 and enhancement layer 2, respectively.

Fingerprint Detection In digital fingerprinting applications, the
host signal can be made available to the detector. We consider a
non-blind detection scenario where the host signal is first removed
from the test copy before colluder identification. The detector first
extracts the fingerprint Yj from the jth frame Vj in the colluded
copy, measures the similarity between the extracted fingerprint and
each of the original fingerprints, compares with a threshold h, and
outputs the estimated identities of the colludersdSC.

We consider a simple detector that collectively uses finger-
prints extracted from all layers to identify colluders. For each user

u(i), the detector first calculates F̆ (i)4=F (i)∩F c, where F (i) con-
tains the indices of frames received by u(i) and F c contains the in-
dices of frames in the colluded copy. Then the detector calculates

T
(i)
N =

0
@ X

j∈F̆ (i)

〈Yj ,W
(i)
j 〉
1
A /

s X

j∈F̆ (i)

||W(i)
j ||2, (1)

where ||W(i)
j || is the Euclidean norm of W

(i)
j . Given a pre-

determined threshold h,dSC = {i : T
(i)
N > h}.

2.3. System Requirements and Performance Criteria

Digital fingerprints can be used in various applications with dif-
ferent requirements [4]. In this paper, we take the catch one sce-
nario as an example, and the analysis for other scenarios are sim-
ilar. In the catch one scenario, the goal is to maximize the chance
to capture one colluder without accusing any innocents, and the
performance criteria are the probability of capturing at least one
colluder (Pd) and the probability of accusing at least one inno-
cent user (Pfp). Under the system requirements that Pd ≥ γd

and Pfp ≤ γfp, we analyze the maximum number of colluders
(Kmax) that the scalable fingerprinting systems can resist.

3. COLLUSION RESISTANCE ANALYSIS

3.1. Analysis of Pd and Pfp

To analyze Kmax, we need to calculate Pd and Pfp first. From [5],
if the colluders choose the collusion parameters as in Table 1, for



Table 1. Fairness Constraints on Collusion Attacks and The Selection of Collusion Parameters.

F c = Fb∪Fe1∪Fe2
Fairness Constraints

8
><
>:

Kb
√

Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≤ Nb

Nb+Ne1+Ne2
,

Kall
√

Nb+Ne1+Ne2

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
≥ Ne2

Nb+Ne1+Ne2
.

Parameter Selection

8
>>><
>>>:

β1 = Nb+Ne1+Ne2
Nb

Kb
√

Nb

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β2Nb + α1Ne1 =
(Nb+Ne1+Ne2)Kb,e1√Nb+Ne1

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
,

β3 = 1− β1 − β2, α2 = 1− α1.

F c = Fb ∪ Fe1
Fairness Constraints

Kb
√

Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
≤ Nb

Nb+Ne1
.

Parameter Selection

8
>>><
>>>:

β1 = Nb+Ne1
Nb

Kb

√
Nb

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
,

β2 = Kb,e1

Kb,e1+Kall (1− β1) , β3 = 1− β1 − β2,

α1 = Kb,e1

Kb,e1+Kall , α2 = 1− α1.

F c = Fb
Fairness Constraints No constraints on (Kb, Kb,e1, Kall) and (Nb, Ne1, Ne2).

Parameter Selection β1 = Kb

Kb+Kb,e1+Kall , β2 = Kb,e1

Kb+Kb,e1+Kall , β3 = Kall

Kb+Kb,e1+Kall .

user u(i), the detection statistics follow Gaussian distribution

p(T
(i)
N |SC) ∼

(
N (µ, σ2

n) if i ∈ SC,

N (0, σ2
n) if i /∈ SC,

(2)

where σ2
n is the variance of the additive noise nj and

µ ≈

8
>>>>><
>>>>>:

Nb+Ne1+Ne2

Kb
√

Nb+Kb,e1
√

Nb+Ne1+Kall
√

Nb+Ne1+Ne2
σW

if F c = Fb ∪ Fe1 ∪ Fe2,
Nb+Ne1

Kb
√

Nb+(Kb,e1+Kall)
√

Nb+Ne1
σW if F c = Fb ∪ Fe1,√

Nb

Kb+Kb,e1+Kall σW if F c = Fb.

(3)
The M detection statistics {T (i)

N }M
i=1 are independent of each other.

Given the threshold h, we can have the approximation that

Pd ≈ 1− [1−Q(
h− µ

σn
)]K and Pfp ≈ 1− [1−Q(

h

σn
)]M−K ,

(4)
where Q(·) is the Gaussian tail function.

3.2. Upper and Lower Bounds of Kmax

Define K = Kb + Kb,e1 + Kall as the total number of collud-
ers. From (2)-(4), for a fixed K, the performance of the scalable
fingerprinting system depends on the resolution of the colluded
copy: its performance is better when the colluded copy has higher
resolution and better quality. This is because when there are more
frames in the colluded copy, the extracted fingerprint is longer and
gives the detector more information of the colluders’ identities.

Given (|Ub|, |Ub,e1|, |Uall|), (Nb, Ne1, Ne2), γfp, and the
total number of colluders K, we define

P U
d (K)

4
= max

F c,(Kb,Kb,e1,Kall)
Pd,

s.t. Kb + Kb,e1 + Kall = K, 0 ≤ Kb ≤ |Ub|,
0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 1 are satisfied; (5)

and P L
d (K)

4
= min

F c,(Kb,Kb,e1,Kall)
Pd,

s.t. Kb + Kb,e1 + Kall = K, 0 ≤ Kb ≤ |Ub|,
0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 1 are satisfied. (6)

For a fixed K, P U
d (K) and P L

d (K) are the upper and lower bounds
of Pd, respectively. We further define

KU
max

4
= argK{P U

d (K) ≥ γd, P U
d (K + 1) < γd}

and KL
max

4
= argK{P L

d (K) ≥ γd, P L
d (K + 1) < γd},(7)

which are the upper and lower bounds of Kmax, respectively. When
the total number of colluders K is smaller than KL

max, the system
requirements are always satisfied no matter what values F c and
(Kb, Kb,e1, Kall) take. If K is larger than KU

max, for all possible
values of F c and (Kb, Kb,e1, Kall), the detector will always fail
under the system requirements Pd ≥ γd and Pfp ≤ γfp.

3.3. Analysis of KU
max and KL

max

To calculate KU
max and KL

max, we first need to calculate P U
d (K)

and P L
d (K). From (3) and (4), for a given K, the lower bound of

Pd is achieved when the colluded copy contains frames in the base
layer only, i.e., F c = Fb, and µ =

√
NbσW /K. Consequently,

P L
d (K) ≈ 1− [1−Q(

h−√NbσW /K

σn
)]K . (8)

To calculate P U
d (K), we observe that the upper bound of Pd

is achieved when the colluded copy has the highest possible reso-
lution under the fairness constraints. From (3) and (4), with fixed
K, maximizing Pd is equivalent to maximizing µ in (3) under the
fairness constraints. Thus, the problem of (5) can be simplified to

µU (K)
4
= max

F c,(Kb,Kb,e1,Kall)
µ,

s.t. Kb + Kb,e1 + Kall = K, 0 ≤ Kb ≤ |Ub|,
0 ≤ Kb,e1 ≤ |Ub,e1|, 0 ≤ Kall ≤ |Uall|,
fairness constraints in Table 1 are satisfied. (9)

We use linear programming [8] to solve the problem of (9), and
detailed analysis is available in [9]. With µU (K) as in (9),

P U
d (K) ≈ 1− [1−Q(

h− µU (K)

σn
)]K . (10)

Given P L
d (K) as in (8) and P U

d (K) as in (10), the analysis of
KL

max and KU
max is the same as that in [4] and not repeated here.
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Fig. 2. Simulation results of the collusion resistance in the catch one scenario. |Ub| : |Ub,e1| : |Uall| = 1 : 1 : 1 and (Nb, Ne1, Ne2) =
(50000, 50000, 100000). γd = 0.8 and γfp = 10−3. (a) shows P U

d (K) and P L
d (K) versus the total number of colluders K when

M = 450 and |Ub| = |Ub,e1| = |Uall| = 150. (b) illustrates KU
max and KL

max versus the total number of users M .

4. SIMULATION RESULTS

In our simulations, we adopt the human visual model based spread
spectrum embedding [6] and embed fingerprints in the DCT do-
main. The fingerprints follow Gaussian distribution N (0, 1/9),
and fingerprints for different users are generated independently. In
each distributed copy, similar to the work in [7], correlated fin-
gerprints are embedded into adjacent frames, and the correlation
depends on the similarity between the host frames.

For real video sequences like “miss america” and “carphone”,
the number of embeddable coefficients in each frame varies from
3000 to 7000, depending on the characteristics of the video. In our
simulations, we assume that the lengths of the fingerprints embed-
ded in each frame is approximately 5000, and we test on a total of
40 frames. We choose Fb = {1, 5, 9, · · · }, Fe1 = {3, 7, 11, · · · }
and Fe2 = {2, 4, 6, 8, · · · } as an example of the temporal scalabil-
ity, and the lengths of the fingerprints embedded in the base layer,
enhancement layer 1, and enhancement layer 2 are Nb = 50000,
Ne1 = 50000, and Ne2 = 100000, respectively.

During collusion, for simplicity, we assume that the collusion
attack is also in the DCT domain and the colluders apply the two-
stage collusion attack as in Section 2.2. For each frame in the
colluded copy, we adjust the power of the additive noise such that
||nj ||2/||W(i)

j ||2 = 2, and other values will give the same trend.
We consider the non-blind detection and remove the host sig-

nal from the test copy before detection. The detector then applies
the detection process in Section 2.2 to identify the colluders.

Figure 2 (a) shows P U
d (K) and P L

d (K) versus the total num-
ber of colluders when there are a total of M = 450 users and
γfp = 10−3. From Figure 2 (a), when K ≥ 210, P U

d (K) < 0.8
and the fingerprinting systems will always fail; and when K ≤ 60,
P L

d (k) ≥ 0.8 and the colluders can never bypass the detector with-
out being detected. Figure 2 (b) plots the KL

max and KU
max versus

the total number of users when γd = 0.8 and γfp = 10−3. From
the attackers’ point of view, if they manage to collect more than
KU

max copies, they can be guaranteed success even if they gen-
erate a colluded copy of the highest resolution and best quality.
From the content owner’s point of view, if he/she can ensure that
potential colluders cannot collect more than KL

max copies, the fin-
gerprinting system is essentially collusion resistant.

From Figure 2 (b), for applications with thousands of users,
the fingerprinting system can withstand approximately 50 collud-
ers. Furthermore, if the content owner distributes no more than

100 copies, the detection performance will always satisfy the re-
quirement even if all users participate in collusion. Consequently,
the fingerprinting system is also collusion-secure if M ≤ 100.

5. CONCLUSIONS

In this paper, we have studied scalable fingerprinting systems in
which users receive copies of different quality and investigated
their resistance against collusion attacks. We have shown that the
scalable fingerprinting systems can resist up to a few dozen collud-
ers. We have also analyzed the lower and upper bounds of Kmax.
From the colluders’ point of view, KU

max tells them the number
of copies necessary to guarantee the success of collusion under all
circumstances. From the content owner’s point of view, to achieve
collusion free, a desired security requirement is to make the poten-
tial colluders unlikely to collect more than KL

max copies.
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