
RISK MINIMIZATION IN TRAITORS WITHIN TRAITORS IN MULTIMEDIA FORENSICS

H. Vicky Zhao and K. J. Ray Liu

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

ABSTRACT

In digital fingerprinting and multimedia forensic systems, it is
possible that multiple adversaries mount attacks collectively and
effectively to undermine the forensic system’s traitor tracing ca-
pability. During this collusion attack, an important issue that the
adversaries need to address is the fairness of attack and ensuring
that all colluders share the same risk of being caught. This paper
studies the dynamics among attackers in enforcing the fairness of
collusion and investigates the problem of traitors within traitors,
in which some selfish colluders wish to minimize their own risk
while still profiting from collusion. We explore the strategies that
these selfish colluders can use to further lower their probability
of being detected and analyze their performance. We show that
by processing their fingerprinted copies before multi-user collu-
sion, the selfish colluders can further reduce their risk at the cost
of quality degradation of their fingerprinted copies.

1. INTRODUCTION

In digital fingerprinting, unique identification information, known
as “fingerprints”, are embedded in each distributed copy and can
be used to track the usage of multimedia data. Multi-user collusion
is a powerful attack against digital fingerprinting, and it uses sev-
eral differently marked copies of the same content to remove the
identifying fingerprints [1]. To support consistent traitor tracing
in multimedia forensics, the embedded fingerprints must survive
multi-user collusion as well as attacks by a single adversary.

Modeling and analyzing collusion attacks help the digital rights
enforcer understand the challenges in multimedia fingerprinting
and design collusion secure fingerprint codes. The work in [2]
studied collusion attacks on fingerprints for generic data. Observ-
ing the uniqueness of multimedia that fingerprints can be seam-
lessly embedded into the host signal, the fingerprint design and
embedding were jointly considered in [3], and the collusion at-
tacks on multimedia fingerprints were modeled as the averaging
attacks followed by an additive noise. Collusion attacks were gen-
eralized to linear shift invariant filtering followed by an additive
noise in [4]. In [1], several types of collusion attacks were studied,
including a few order statistics based nonlinear collusion.

During collusion, the attackers not only share the profit from
the illegal usage of multimedia, they also share the risk of being
captured. Since no one is willing to take a higher risk than the oth-
ers, the attackers usually agree to distribute the risk evenly among
themselves and apply fair collusion. Most prior work assumed
that the attackers keep their agreement to share the same risk dur-
ing collusion. In reality, however, the assumption of fair-play does
not always hold. Some selfish colluders may break the fairness
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agreement with others by trying to further lower their risk of be-
ing caught. The existence of such selfish colluders complicates
collusion. To build a complete model of multi-user collusion, it
is important to study this problem of “traitors within traitors” and
understand the attackers’ behavior during collusion to minimize
their risk and protect their interests. As the first step in analyzing
the dynamics among colluders, this paper investigates the possi-
ble strategies by the selfish colluders to minimize their risk and
analyzes their performance.

This paper is organized as follows. We begin in Section 2 with
the introduction of digital fingerprinting systems and the model of
the traitors within traitors. Section 3 investigates the possible tech-
niques that the selfish colluders can use to further reduce their risk
and analyzes their performance. Section 4 shows the simulation
results, and conclusions are drawn in Section 5.

2. SYSTEM MODEL

2.1. Digital Fingerprinting System Model

A digital fingerprinting system usually consists of three parts: fin-
gerprint embedding, collusion attacks, and fingerprint detection.

Fingerprint Embedding Spread spectrum embedding is widely
used in multimedia fingerprinting due to its robustness against many
attacks [5]. In spread spectrum embedding, for the jth frame in the
video sequence represented by a vector Sj of length Nj , for user
u(i) in the system, the content owner generates a unique finger-
print W

(i)
j of length Nj . The fingerprinted frame j that will be

distributed to u(i) is X
(i)
j = Sj + JNDj ·W(i)

j , where JNDj

is the just-noticeable-difference from human visual models [5] to
control the energy of the embedded fingerprints.

We use Gaussian distributed fingerprints due to their resistance
to a wide range of attacks, and generate {W(i)

j } from distribution
N (0, σ2

W ). To resist the intra-content collusion attacks on video
watermarking systems [6], in each fingerprinted copy, correlated
fingerprints are inserted into adjacent frames and the correlation
depends on the similarity between the host frames. This is simi-
lar to the work in [7]. Furthermore, we generate fingerprints for
different users independently.

Multi-user Collusion Attacks Assume that there are a total of K

colluders and SC is the set containing their indices. During col-
lusion, the colluders collect all the fingerprinted copies that they
received, apply the multi-user collusion function to these copies,
and generate the colluded copy {Vj} in which the originally em-
bedded fingerprints are attenuated.

A recent investigation in [8] showed that, under the constraints
that the colluded copies under different collusion have the same
perceptual quality, the performance of nonlinear collusion attacks
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Fig. 1. (a): The collusion attack when all colluders tell each other
true information of their fingerprinted copies. (b): The collusion
attack when some selfish colluders want to further reduce their
own probability of being detected.

is similar to that of the averaging attack. Thus, we only consider
the averaging based collusion attacks here.

Fingerprint Detection In digital fingerprinting applications, the
host signal can be made available to the detector and the non-blind
detection is feasible. To improve the detection performance [8],
we consider a non-blind detection scenario where the host signal
is first removed from the test copy before colluder identification.
During detection, the detector extracts the fingerprint Yj from the
jth frame Vj in the test copy. Then, he calculates the similarity
between this extracted fingerprint {Yj} and each of the original
fingerprints {W(i)

j }, compares with a pre-determined threshold h,

and outputs the estimated identities of the colludersdSC.
To measure the similarity between the extracted fingerprint

and the original fingerprint, given {Yj}, for each user u(i), the
detector calculates the correlation based detection statistics

T
(i)
N =

X
j

〈Yj ,W
(i)
j 〉/

sX
j

||W(i)
j ||2, (1)

where ||W(i)
j || is the Euclidean norm of W

(i)
j . For a given thresh-

old h, the estimated colluder set isdSC = {i : T
(i)
N > h}.

2.2. Traitors Within Traitors

As pointed out in Section 1, to ensure the fairness of collusion,
the attackers agree to have the same probability of being detected.
Most prior work assumed that the colluders keep their agreement
to share the same risk and tell each other the truth information of
their received copies. Figure 1 (a) shows an example of the collu-
sion attack in this scenario. Assume that X(i) is the fingerprinted
copy that colluder u(i) received from the content owner. In this
scenario, the multi-user collusion attack is applied to {X(i)}i∈SC ,
and the colluded copy equals to V =

P
i∈SC X(i)/K +n, where

n is an additive noise to further hinder the detection.
However, there may exist selfish colluders who wish to fur-

ther lower their risk of being caught. For example, they may pro-
cess their fingerprinted signals before multi-user collusion and use
the processed copies instead of the originally received ones for
participating in the collusion, as shown in Figure 1 (b). Without
loss of generality, assume that u(i1) is the selfish colluder, and
he received the fingerprinted copy X(i1) from the content owner.
Based on X(i1), u(i1) generates another copy eX(i1) that is per-
ceptually similar to X(i1), and uses eX(i1) during collusion. If
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Fig. 2. Pre-collusion processing using temporal filtering.

the other colluders fail to discover the pre-collusion processing
by u(i1), they apply the multi-user collusion attack to the copies
eX(i1) and {X(i)}i∈SC,i6=i1 , and generate the colluded copy V′ =

(eX(i1) +
P

i∈SC,i6=i1
X(i))/K +n, where n is an additive noise.

2.3. Performance Criteria

For a selfish colluder u(i1), to measure the effectiveness of pre-
collusion processing in reducing his risk, we fix the probability
of falsely accusing an innocent user (Pfa), and compare u(i1)’s
probability of being captured (P (i1)

d ) in two scenarios: when u(i1)

does not apply pre-collusion processing (i.e., he is willing to share
the risk with other colluders), and when u(i1) processes his fin-
gerprinted copy before collusion. From the selfish colluder’s point
of view, the pre-collusion processing technique is more effective
when the difference between these two probabilities is larger.

In the example shown in Figure 1 (b), in order to cover up
the fact that he processed his fingerprinted copy before multi-user
collusion, the selfish colluder u(i1) has to ensure that the newly
generated copy eX(i1) has high quality when compared with X(i1).
To measure the effect of pre-collusion processing on perceptual
quality, we use the mean square error (MSE) between eX(i1) and
X(i1), or equivalently, PSNR in image and video applications.

3. PRE-COLLUSION PROCESSING AND
PERFORMANCE ANALYSIS

For a selfish colluder to further reduce his own risk, one possible
solution is to attenuate the energy of the fingerprints embedded in
his received copy even before multi-user collusion. An example is
to replace each segment of the fingerprinted signal with another,
seemingly similar segment from different regions of the content,
e.g., averaging or swapping consecutive frames of similar content
[6]. In this section, we take temporal filtering of adjacent frames
as an example, and analyze its effects on the probability of being
detected and the perceptual quality of the fingerprinted copies.

3.1. Temporal Filtering Before Multi-user Collusion

We assume that the selfish colluder u(i1) received fingerprinted
frames {X(i1)

j }j=1,2,··· from the content owner, and uses a simple
linear interpolation to produce a temporally filtered video.1 As
shown in Figure 2, for each frame j, u(i1) linearly combines the
current frame X

(i1)
j , the previous frame X

(i1)
j−1, and the next frame

X
(i1)
j+1 with weights λj(0), λj(−1), and λj(+1), respectively, and

generates a new frame eX(i1)
j where

eX(i1)
j = λj(−1) ·X(i1)

j−1 + λj(0) ·X(i1)
j + λj(+1) ·X(i1)

j+1. (2)

1A selfish colluder can also apply more complicated motion based in-
terpolation [9], and the analysis will be similar.



In (2), 0 ≤ λj(−1), λj(0), λj(+1) ≤ 1 and λj(−1) + λj(0) +
λj(+1) = 1. For simplicity, we let λj(−1) = λj(+1) = (1 −
λj(0))/2. The selfish colluder u(i1) repeats this process for every
frame in the video sequence and generates {eX(i1)

j }j=1,2,···. Note

that when λj(0) = 1, eX(i1)
j = X

(i1)
j and it corresponds to the

scenario where u(i1) does not process his copy before collusion.

3.2. Performance Analysis

In this section, we analyze the quality of the newly generated frames
{eX(i1)

j } and the selfish colluder’s risk of being captured P
(i1)
d .

Perceptual Quality If eX(i1)
j is generated as in (2), then the MSE

between eX(i1)
j and X

(i1)
j is

MSEj = ||eX(i1)
j −X

(i1)
j ||2 = (

1− λj(0)

2
)2 · φj ,

where φj = 4||X(i1)
j ||2 + ||X(i1)

j−1||2 + ||X(i1)
j+1||2

−4〈X(i1)
j−1,X

(i1)
j 〉 − 4〈X(i1)

j ,X
(i1)
j+1〉

+2〈X(i1)
j−1,X

(i1)
j+1〉. (3)

In (3), ||X(i1)
j || is the Euclidean norm of X(i1)

j , and 〈X(i1)
j−1,X

(i1)
j 〉

is the correlation between X
(i1)
j−1 and X

(i1)
j . From (3), a larger

λj(0) implies a smaller MSEj , and therefore, is preferred from
the perceptual quality’s point of view. Compared with X

(i1)
j , eX(i1)

j

has the best possible quality when λj(0) = 1.

Probability of being detected We assume that there is only one
selfish colluder u(i1) and the other colluders do not discover his
pre-collusion processing actions.2 We can show that in this sce-
nario, the fingerprint extracted from the jth frame in the colluded
copy is

Yj =
λj(−1) ·W(i)

j−1 + λj(0) ·W(i)
j + λj(+1) ·W(i)

j+1

K

+

P
i∈SC,i6=i1

W
(i)
j

K
+ dj , (4)

where dj contains terms that are independent of the embedded
fingerprints {W(i)

j }. For simplicity, we assume that dj are i.i.d.
and follow Gaussian distribution N (0, σ2

n).
It is straightforward to show that given the colluder set SC

and the index of the selfish colluder i1, the detection statistics fol-
low Gaussian distribution with mean µ(i) and variance σ2

n, i.e.,
p(T

(i)
N |SC, i1) ∼ N (µ(i), σ2

n). The detection statistics of an in-
nocent user have a zero mean, and that of a guilty colluder have a
positive mean. Consequently, the probability of accusing an inno-
cent user is Pfa ≈ Q(h/σn), and the probability of capturing a
guilty colluder u(i∈SC) is P

(i)
d ≈ Q((h− µ(i))/σn). Here, Q(·)

is the Gaussian tail function and h is the pre-determined threshold.
Consequently, for fixed σ2

n and Pfa, minimizing the selfish col-
luder’s probability of being detected is equivalent to minimizing
the mean of his detection statistics.

For a selfish colluder u(i1),
µ(i1) =

X
j

µ
(i1)
j , where

µ
(i1)
j =

〈W(i1)
j−1,W

(i1)
j 〉+ 〈W(i1)

j ,W
(i1)
j+1〉

2K

qP
l ||W(i1)

l ||2
2The analysis is similar when there are multiple selfish colluders using

temporal filtering during pre-collusion processing.

−λj(0)× ||W(i1)
j ||2 − 〈W(i1)

j−1,W
(i1)
j 〉

2K

qP
l ||W(i1)

l ||2

−λj(0)× ||W(i1)
j ||2 − 〈W(i1)

j ,W
(i1)
j+1〉

2K

qP
l ||W(i1)

l ||2
. (5)

In (5), 〈W(i)
j−1,W

(i)
j 〉 is the correlation between W

(i)
j−1 and W

(i)
j ,

and 〈W(i)
j ,W

(i)
j+1〉 is the correlation between W

(i)
j and W

(i)
j+1.

〈W(i)
j−1,W

(i)
j 〉 ≤ 〈W(i)

j ,W
(i)
j 〉 = ||W(i)

j ||2 and 〈W(i)
j ,W

(i)
j+1〉 ≤

||W(i)
j ||2 from the fingerprint design in Section 2.1. From (5),

if λ1(0), · · · , λj−1(0), λj+1(0), · · · are fixed, µ(i1) is a non-
decreasing function of λj(0) and is minimized when λj(0) =

0. Thus, from minimizing the risk’s point of view, u(i1) should
choose a smaller λj(0).

3.3. Selection of the Optimal Weight Vector

During pre-collusion processing, a selfish colluder wishes to mini-
mize his probability of being detected while maintaining the qual-
ity of the fingerprinted copies. Thus, for a selfish colluder u(i1),
the selection of the weight vector {λj(0)} can be modeled as

min
{λj(0)}

µ(i1)

s.t. MSEj ≤ ε, 0 ≤ λj(0) ≤ 1, j = 1, 2, · · · , (6)

where ε is the constraint on the perceptual quality of {eX(i1)
j }.

Given φj as defined in (3), we can show that the solution to (6)
is: for each frame j,

λ∗j = max
n

0, 1− 2 ·
p

ε/φj

o
. (7)

By using {λ∗j} as in (7) during temporal filtering, a selfish col-
luders minimizes his own probability of being detected and en-
sures that the newly generated frames have high perceptual quality
(MSE ≤ ε) when compared with the originally received copy.

4. SIMULATION RESULTS

In our simulations, we choose a typical video sequence “carphone”,
and use the first 40 frames as an example. At the content owner’s
side, we adopt the human visual model based spread spectrum em-
bedding [5] and embed fingerprints in the DCT domain. The fin-
gerprints follow Gaussian distributionN (0, 1/9), and fingerprints
for different users are generated independently. In each finger-
printed copy, similar to the work in [7], fingerprints embedded in
adjacent frames are correlated with each other, and the correlation
depends on the similarity between the two host frames.

At the colluders’ side, we assume that there are a total of
150 colluders. For simplicity, we assume that there is only one
selfish colluder and he applies temporal filtering as in (2) dur-
ing pre-collusion processing. In this paper, we adjust the power
of the additive noise such that the noise term dj in (4) satisfies
||dj ||2 = 2||W(i)

j ||2. Other values will give the same trend.
At the detector’s side, we consider a non-blind detection sce-

nario. The detector first removes the host signal from the test copy
and then applies the fingerprint detection process in Section 2.1.

Figure 3 shows the simulation results of temporally filtering
adjacent frames on sequence “carphone”. We compare the per-
ceptual quality of the newly generated frames and the selfish col-
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Fig. 3. Simulation results of temporal filtering of adjacent frames
on sequence “carphone”. (Top): PSNR of the newly generated
copy compared with the originally received fingerprinted frames.
(Bottom): the selfish colluder’s probability of being detected.

luder’s probability of being detected when {λ0
j} take different val-

ues. In Figure 3, for frame j, PSNRj is defined as PSNR of eX(i1)
j

compared with X
(i1)
j . In our simulations, we let λj(0) equal to 1,

0.8, λ∗j and 0, respectively3. {λ∗j} are the solution of (7) in which
ε is chosen to satisfy PSNRj ≥ 40dB for all frames.

From Figure 3, a selfish colluder can reduce his own proba-
bility of being detected by temporally filtering adjacent frames be-
fore multi-user collusion. By choosing {λ0

j} of smaller values, the
selfish colluder has a smaller probability of being detected while
sacrificing the quality of the newly generated copy {eX(i1)

j }. Thus,
during pre-collusion processing, the selfish colluder has to con-
sider the tradeoff between the risk and the perceptual quality.

Figure 4 compares the solution of {λ∗j} in (7) for different
video sequences. We choose ε in (7) to satisfy PSNRj ≥ 40dB

for all frames in {eX(i1)
j }. From Figure 4, for sequences that have

large smooth regions and slow motion (“miss america”), a self-
ish colluder can choose {λj(0)} with small values, e.g., around
0, without significant quality degradation. For moderately com-
plicated sequences (“carphone” and “foreman”), λ∗j is around 0.5.
For sequences with fast movement and complicated scene compo-
sition (“flower”), a selfish colluder has to choose large {λj(0)},
e.g., larger than 0.9, to ensure the perceptual quality.

3λj(0) = 1 corresponds to the scenario where the selfish colluder
u(i1) does not process his fingerprinted copy before multi-user collusion.
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Fig. 4. λ∗j of (7) for different sequences. ε is chosen to satisfy

PSNRj ≥ 40dB for all frames in {eX(i1)
j }.

5. CONCLUSIONS

In this paper, we have studied the dynamics among attackers dur-
ing collusion and investigated the possible techniques for selfish
colluders to minimize their own risk of being caught while still
profiting from collusion. For these selfish colluders,, we proposed
to apply temporal filtering to the received copies before collusion
in order to attenuate energies of the embedded fingerprints, and an-
alyzed its performance. Our results showed that this pre-collusion
processing further lowers the selfish colluder’s risk of being de-
tected at the cost of quality degradation. We then investigated the
selection of the parameters in temporal filtering to minimize the
selfish colluder’s risk under the quality constraints, and showed
that the selfish colluders should adjust these parameters according
to the characteristics of video sequences.
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