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Abstract—Dynamic spectrum access (DSA), enabled by cogni-
tive radio technologies, has become a promising approach to
improve efficiency in spectrum utilization, and the spectrum
auction is one important DSA approach, in which secondary
users lease some unused bands from primary users. However,
spectrum auctions are different from existing auctions studied by
economists, because spectrum resources are interference-limited
rather than quantity-limited, and it is possible to award one band
to multiple secondary users with negligible mutual interference.
To accommodate this special feature in wireless communications,
in this paper, we present a novel multi-winner spectrum auction
game not existing in auction literature. As secondary users may
be selfish in nature and tend to be dishonest in pursuit of
higher profits, we develop effective mechanisms to suppress their
dishonest/collusive behaviors when secondary users distort their
valuations about spectrum resources and interference relation-
ships. Moreover, in order to make the proposed game scalable
when the size of problem grows, the semi-definite programming
(SDP) relaxation is applied to reduce the complexity significantly.
Finally, simulation results are presented to evaluate the proposed
auction mechanisms, and demonstrate the complexity reduction
as well.

Index Terms—Cognitive radio, spectrum auction, collusion-
resistant mechanism, scalable algorithm.

I. INTRODUCTION

AS the demand for wireless spectrum has been growing
rapidly with the deployment of new wireless applications

and devices in the last decade, the regulatory bodies such
as the Federal Communications Commission (FCC) have
begun to consider more flexible and comprehensive usage of
available spectrum [1][2]. With the development of cognitive
radio technologies [3], dynamic spectrum access becomes a
promising approach, which allows unlicensed users (secondary
users) dynamic, opportunistic access to the licensed bands
owned by legacy spectrum holders (primary users) in either a
non-cooperative fashion [4]–[6] or a cooperative fashion [7]–
[13].

In the non-cooperative approach, secondary users’ existence
is transparent to primary users, and secondary users have to
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frequently sense the radio environment to detect the presence
of primary users. Whenever finding a spectrum opportunity
when the primary user is absent, secondary users are allowed
to occupy the spectrum; but they must immediately vacate the
band when the primary user appears. Several schemes have
been previously proposed in the literature. For instance, in
[4], the authors devised rules for secondary users to utilize
available spectrum while avoiding interference with their
neighbors based on a graph-theoretic model. The work in [5]
examined the secondary users’ access patterns to propose a
feasible spectrum sharing scheme. In [6], the authors proposed
a primary prioritized Markovian dynamic spectrum access
scheme to optimally coordinate secondary users’ spectrum ac-
cess and achieve a good statistical tradeoff between efficiency
and fairness.

However, imperfect spectrum sensing may lead to missed
spectrum opportunities as well as collision with primary users.
To circumvent the difficulties, an alternative is the cooperative
approach where spectrum opportunities are announced by
primary users rather than discovered by secondary users. Since
primary users have the incentive to trade their temporarily
unused bands for monetary gains and secondary users want to
lease some bands for data transmission, they may negotiate the
price for a short-term lease. With the emerging applications
of mobile ad hoc networks envisioned in civilian usage, it is
reasonable to assume secondary users are selfish and aim at
maximizing their own interests because they do not serve a
common goal or belong to a single authority. Operated by
human or service providers, they are also capable of acting
intelligently. Based on these assumptions, there are several
previous efforts studying dynamic spectrum access via pricing
and auction mechanisms. In [7], the price of anarchy, i.e., the
loss due to the lack of a central authority, was analyzed for
spectrum sharing in WiFi networks. In [8], a demand respon-
sive pricing framework was proposed to maximize the profits
of legacy spectrum operators while considering the buyers’
response model. An auction-based mechanism was proposed
in [9] to efficiently share spectrum among secondary users in
interference-limited systems. In [10], the authors considered
a multi-unit sealed-bid auction for efficient spectrum alloca-
tion. In [11], a real-time spectrum auction framework with
interference constraints was proposed to get a conflict-free
allocation. In [12] [13], a belief-assisted distributive pricing
algorithm was proposed to achieve efficient dynamic spectrum
allocation based on double auction mechanisms. Although
existing schemes have enhanced spectrum allocation efficiency
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through market mechanisms, some critical challenges still
remain unanswered.

First, in most of the current auctions, one licensed band
(or a collection of multiple bands) is awarded to a unique
winner just like traditional auctions studied by economists
[14]. However, the spectrum resource is quite different from
other commodities in that it is interference-limited rather
than quantity-limited, because it is reusable by wireless users
geographically far apart. In some application scenarios where
secondary users only need to communicate within a short
range, such as a wireless personal area network (WPAN)
centered around a person’s workspace, the transmission power
is quite low, and hence even users with moderate distances can
simultaneously access the same band. In this case, allowing
multiple winners to lease the band is an option consented by
everyone: primary users get higher revenue, secondary users
get more chances to access the spectrum, and spectrum usage
efficiency gets boosted as well from the system designer’s
perspective. To the best of our knowledge, such an auction
does not exist in the literature, and we coin the name multi-
winner auction to highlight the special features of the new
auction game, in which auction outcomes (e.g., the number of
winners) highly depend on the geographical locations of the
wireless users.

Second, although a few papers (e.g., [9][11]) have discussed
spectrum auctions under interference constraints, most of them
are based on the assumption that secondary users are truth-
tellers, that is, they will honestly reveal their private infor-
mation such as the valuations and interference relationships.
However, since secondary users are selfish by nature, they may
misrepresent their private information in order for a higher
payoff. Therefore, proper mechanisms have to be developed to
provide incentives to reveal true private information. Although
the Vickery-Clarke-Groves (VCG) mechanism is a possible
choice enforcing that users bid their true valuations [15], it is
also well-known to suffer from several drawbacks such as low
revenue [16][17]. As auction rules significantly impact bidding
strategies, it is of essential importance to develop new auction
mechanisms to overcome the disadvantages.

Third, mechanisms to be developed should take into con-
sideration the collusive behavior of selfish users, which is a
prevalent threat to efficient spectrum utilization but has been
generally overlooked [13]. Driven by their pursuit of higher
payoffs, a clique of secondary users may cheat together, and
sometimes they may even have a more facilitated way to
exchange information for collusion if they belong to the same
service provider. Furthermore, awarding the same band to
multiple buyers simultaneously under interference constraints,
the multi-winner auction makes possible new kinds of collu-
sion [18], besides the bidding ring collusion1 from traditional
auctions. Emerging kinds of collusion will be discussed in
detail later in this paper, and effective countermeasures have
to be developed against them.

Last but not least, it is much more meaningful to show the
proposed scheme can be applied in practice, where complexity

1In the bidding ring collusion, several potential buyers form a bidding ring
by making an agreement not to outbid one another, which may keep prices
low and decrease the seller’s revenue. It can be eliminated by setting up an
optimal reserve price [13].

issues come into the spotlight: the mechanism should be easy
to implement, and it should be scalable when more and more
users are incorporated into the auction game. However, as we
analyze later in this paper, the optimal resource allocation that
maximizes the system utility in the auction is an NP-complete
problem [19] whose exact solution needs a processing time
increasing exponentially with the size of the problem, and
hence the computational complexity becomes too formidable
to be practical when the number of users is large. By applying
the semi-definite programming (SDP) relaxation [20] to the
original problem, a tight upper bound can be obtained in
polynomial time.

The rest of this paper is organized as follows. In Section
II, the model for a multi-winner cognitive spectrum auction
is described, and several kinds of collusion are illustrated.
In Section III, we develop auction mechanisms that not only
yield high revenue but also prevent user collusion, and employ
the SDP relaxation to make the scheme implementable and
scalable. The one-band auction game is generalized to a multi-
band auction in Section IV. Simulation results are presented
in Section V, and Section VI concludes the paper.

Notations: A ∈ M𝑚×𝑛 means A is a matrix with dimen-
sion 𝑚 × 𝑛, and b ∈ M𝑚×1 indicates b is a column vector
with length 𝑚. Denote their entries as 𝐴𝑖𝑗 and 𝑏𝑖, respectively.
The trace of a matrix A is denoted by tr(A), and its rank is
denoted by rank(A). The 2-norm of a vector b is denoted by
∣b∣2. The all-zero, all-one, and identity matrices are denoted
by O, 1, and I, respectively, and their dimensions are given
in the subscript when there is room for confusion. S ∈ S 𝑛

means S is an 𝑛 × 𝑛 real symmetric matrix, and S ર O
implies S is positive semi-definite. The Kronecker product of
two matrices A and B is denoted by

A⊗B =

⎡⎢⎢⎢⎣
𝐴11B 𝐴12B ⋅ ⋅ ⋅ 𝐴1𝑛B
𝐴21B 𝐴22B ⋅ ⋅ ⋅ 𝐴2𝑛B

...
...

. . .
...

𝐴𝑚1B 𝐴𝑚2B ⋅ ⋅ ⋅ 𝐴𝑚𝑛B

⎤⎥⎥⎥⎦ . (1)

Denote b−𝑖 = [𝑏1, 𝑏2, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑚]𝑇 as a new
vector with the 𝑖th entry of b excluded. Similarly, if 𝑊 is
a set of indices, b−𝑊 implies all the entries whose indices
fall in 𝑊 are removed. ∣𝑊 ∣ denotes the cardinality of a set
𝑊 . For two sets 𝑊1 and 𝑊2, the set difference is defined as
𝑊1 ∖𝑊2 = {𝑥∣𝑥 ∈ 𝑊1 and 𝑥 ∕∈𝑊2}.

II. SYSTEM MODEL

We consider a cognitive radio network where 𝑁 secondary
users coexist with 𝑀 primary users, and primary users seek
to lease their unused bands to secondary users for monetary
gains. We model it as an auction where the sellers are the
primary users, the buyers are the secondary users, and the
auctioneer is a spectrum broker who helps coordinate the
auction. Assume there is a common channel to exchange
necessary information and a central bank to circulate money in
the community. For simplicity, we assume each primary user
owns one band exclusively, and each secondary user needs
only one band. In this paper, we first consider the auction with
a single band (𝑀 = 1), and later extend it to the multi-band
auction.
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The system designer determines a fixed leasing period 𝑇
according to channel dynamics and overhead considerations,
that is, the duration should be short enough to make spectrum
access flexible but not too short since the overhead of the
auction would become problematic. At the beginning of each
leasing period, if a primary user decides not to use his/her own
licensed band for the next duration of 𝑇 , he/she will notify the
spectrum broker of the intention to sell the spectrum rights.
Meanwhile, the potential buyers submit their sealed bids
b = [𝑏1, 𝑏2, . . . , 𝑏𝑁 ]𝑇 to the spectrum broker simultaneously,
where 𝑏𝑖 is the bid made by user 𝑖. According to the bids
and channel availability, the broker decides both the allocation
x = [𝑥1, 𝑥2, . . . , 𝑥𝑁 ]𝑇 and the prices p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ]𝑇 ,
where 𝑥𝑖 = 1 means secondary user 𝑖 wins some band,
𝑥𝑖 = 0 otherwise, and 𝑝𝑖 is the price of the band for the
𝑖th secondary user2. Alternatively, we can define the set of
winners as 𝑊 ⊆ {1, 2, . . . , 𝑁}, where 𝑖 ∈ 𝑊 if and only
if 𝑥𝑖 = 1. Assume user 𝑖 gains value 𝑣𝑖 from transmitting
information in the leased band, his/her reward is

𝑟𝑖 = 𝑣𝑖𝑥𝑖 − 𝑝𝑖, 𝑖 = 1, 2, . . . , 𝑁. (2)

Given all users’ valuations v = [𝑣1, 𝑣2, . . . , 𝑣𝑁 ]𝑇 , the system
utility, or the social welfare3, can be represented by

𝑈v(x) =

𝑁∑
𝑖=1

𝑣𝑖𝑥𝑖 =
∑
𝑖∈𝑊

𝑣𝑖. (3)

Since the proposed multi-winner auction awards the band
simultaneously to several secondary users according to their
mutual interference, interference plays an important role in
the auction. There are several models for wireless interfer-
ence [21]–[24], such as the protocol model and the physical
model. In this paper, we will mainly focus on the well-known
protocol model [21] which is simpler to understand, in order
to highlight our contributions in auction mechanisms. With
the protocol model employed, mutual interference in Fig. 1
(a) where 𝑁 = 6 secondary cognitive base stations compete
for the spectrum lease can be well captured by a conflict
graph (Fig. 1 (b)), or equivalently, by an 𝑁 × 𝑁 adjacency
matrix C (Fig. 1 (c)). By collecting reports from secondary
users about their locations or their neighbors, the spectrum
broker keeps the matrix C updated, even if the interference
constraints change from time to time because of the slow
movement of secondary users. When 𝐶𝑖𝑗 = 1, user 𝑖 and
user 𝑗 cannot access the same band simultaneously, and if
they do, neither of them gains due to collision. Therefore, the
interference constraint is 𝑥𝑖 + 𝑥𝑗 ≤ 1 if 𝐶𝑖𝑗 = 1.

However, our method can also be extended to the physical
model in [23] which describes interference in a more accurate
way but is more complicated. Under the physical model, only
transmissions with the received signal-to-interference-and-
noise ratio (SINR) exceeding some threshold 𝛽 are considered

2Different from the sequential auction which lasts for multiple rounds, in a
sealed bid auction where buyers submit their bids simultaneously only once,
the “pay-as-bid” strategy cannot enforce truth-telling. Hence, the price 𝑝𝑖 is
upbounded by his/her bid 𝑏𝑖, and determined by the auction mechanism.

3The social welfare measures the system-wide utility created by the
transaction of commodities in the auction. Since prices paid by buyers and
revenue gained by sellers cancel each other out, the social welfare does not
depend on prices {𝑝𝑖}.

Fig. 1. Illustration of the interference structure in a cognitive spectrum auc-
tion. (a) physical model; (b) graph representation; (c) matrix representation.

successful, i.e., 𝑔𝑖𝑖𝑃/
(∑

𝑗 ∕=𝑖 𝑔𝑗𝑖𝑃𝑥𝑗 + 𝑍𝑖

)
≥ 𝛽, where 𝑔𝑗𝑖

represents the channel gain from 𝑗th user’s transmitter to 𝑖th
user’s receiver, 𝑍𝑖 is the noise at receiver 𝑖, and we assume
all users use the same power 𝑃 . By neglecting the noise term
when interference is the dominant factor in the system, the
condition for simultaneous transmissions when no individual
is impaired by mutual interference can be further reduced to∑𝑁

𝑗=1 𝛼𝑗𝑖𝑥𝑗 ≤ 0 if 𝑥𝑖 = 1, where we define 𝛼𝑖𝑖 = −1
and 𝛼𝑗𝑖 = 𝛽𝑔𝑗𝑖/𝑔𝑖𝑖, 𝑖 ∕= 𝑗. We will briefly discuss auction
mechanisms under the physical model at the end of Section
III.

The special feature that multiple winners can share one band
results in new kinds of potential collusion. In the following, we
illustrate them by simple examples in the situation of Fig. 1,
assuming users {2, 4, 6} are supposed to be winners in absence
of collusion.

∙ Loser collusion. A group of losers without mutual inter-
ference, e.g., users {1, 5}, cannot win the band because
the band is less worth to them than to the winners.
However, by collusively raising their bids beyond their
valuations, the group may beat the winners and win
the band instead. If the prices charged to them are still
lower than their true valuations even if they overbid, they
will receive positive payoffs from this kind of collusion.
Hence, auction mechanisms should prevent overbidding
colluders from gaining profits.

∙ Sublease collusion. After the auction, some of the win-
ners may decide not to access the spectrum but sublease
to other secondary users who failed to win the band in
the auction. For instance, users {2, 6} may negotiate a
price with potential buyers {3, 5} and sublease the band
as long as all of them agree on the sublease price. Earning
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extra profits effortlessly, colludes take away some benefits
which should be credited to the primary user.

∙ Kick-out collusion. Several users belonging to the same
group of interests attempt to manipulate the auction
outcome by misrepresenting mutual interference. Assume
users {4, 5, 6} form such a group. Now, user 4 and user 6
will claim they have mutual interference with users 2, i.e.,
𝐶42 = 1 and 𝐶62 = 1, to kick user 2 out, and welcome
their ally, user 5, to join in the winner set.

III. ONE-BAND MULTI-WINNER AUCTION

Defining rules for winner determination and price deter-
mination, mechanism design plays an important role in an
auction, since it greatly affects the auction outcome as well
as user behavior. For example, the widely employed VCG
mechanism [15] ensures the maximum system utility and
enforces that all buyers bid their true valuations in the absence
of collusion, i.e., 𝑏𝑖 = 𝑣𝑖 (𝑖 = 1, 2, . . . , 𝑁). Although the
VCG mechanism could be applied to the multi-winner auction,
serious drawbacks such as low revenue and vulnerability to
user collusion make it less attractive, as shown in [18] through
specific examples in cognitive spectrum auctions. Therefore,
we need to develop suitable mechanisms for the multi-winner
auction which guarantee system efficiency, yield high revenue,
prevent potential collusion, and are easy to implement.

A. The Optimal Allocation

Because the goal of dynamic spectrum access is to improve
the efficiency of spectrum utilization, the auction mechanisms
should be designed such that the social welfare is maximized,
that is, the band is awarded to the secondary users who value
them most.

In a cognitive spectrum auction, only those without mutual
interference can be awarded the band simultaneously, and we
group them together as virtual bidders, whose valuations equal
the sum of the individual valuations. Take Fig. 1 for example,
there are seventeen virtual bidders, such as {1}, {1, 5},
{4, 5, 6} and so on; on the other hand, combinations like {1, 3}
and {2, 5, 6} are not virtual bidders due to interference. In
order to achieve full efficiency, the virtual bidder with the
highest bid will win the band. It is unnecessary to list all
virtual bidders explicitly; instead, the optimal allocation x
can be determined by the following 𝑁 -variable binary integer
programming (BIP) problem,

𝑈∗
v =max

x

𝑁∑
𝑖=1

𝑣𝑖𝑥𝑖,

s.t. 𝑥𝑖 + 𝑥𝑗 ≤ 1, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1, (interference constraints)

𝑥𝑖 = 0 or 1, 𝑖 = 1, 2, . . . , 𝑁,
(4)

where interference constraints require that secondary users
with mutual interference should not be assigned the band
simultaneously.

B. Collusion-Resistant Pricing Strategies

After introducing the concept of virtual bidders, the multi-
winner spectrum auction becomes similar to the single-winner

auction, and hence it is possible to employ the second-price
strategy4. By applying the second-price mechanism to the
auction consisting of virtual bidders, the virtual bidder with
the highest bid wins the band (ties are broken randomly if two
virtual bidders have the same valuation), and pays the highest
bid made by the virtual bidder only consisting of losers. This
can be done by solving two optimal allocation problems in
succession. First, we solve (4) to determine the set of winners
𝑊 , or the virtual winner. Then, we remove all the winners 𝑊
from the system, and solve the optimization problem again to
calculate the maximum utility, denoted by 𝑈∗

v−𝑊 , which is the
amount of money that the virtual winner has to pay.

We have to point out that the new pricing strategy sacrifices
the enforcement of truth-telling a little bit for higher revenue
and more robustness against collusion; however, since the
proposed pricing strategy is quite similar to the second-price
mechanism where users bid their true valuations, we expect
users will not shade their bids too much from their true
valuations. Thus, we neglect the difference between 𝑏𝑖 and 𝑣𝑖
in the following analysis to focus on revenue and robustness
aspects of the new mechanisms.

The remaining problem is splitting the payment 𝑈∗
v−𝑊

among the secondary users within the virtual winner. This
is quite similar to a Nash bargaining game [25] where each
selfish player proposes his/her own payment during a bargain-
ing process such that the total payment equals 𝑈∗

v−𝑊 , and it is
well-known that the Nash bargaining solution (NBS), which
maximizes the product of individual payoffs, is an equilibrium
[25]. In the proposed auction, no individual bargaining is
necessary; instead, the spectrum broker directly sets the NBS
prices for each winner, and everyone is ready to accept them
since they are equilibrium prices. The pricing strategy is the
solution to the following optimization problem,

max
{𝑝𝑖∈[0,𝑣𝑖], 𝑖∈𝑊}

∏
𝑖∈𝑊

(𝑣𝑖 − 𝑝𝑖),

s.t.
∑
𝑖∈𝑊

𝑝𝑖 = 𝑈∗
v−𝑊 .

(5)

Proposition 1: User 𝑖 has to pay the price

𝑝𝑖 = max {𝑣𝑖 − 𝜌, 0} , for 𝑖 ∈ 𝑊, (6)

where 𝜌 is chosen such that
∑

𝑖∈𝑊 𝑝𝑖 = 𝑈∗
v−𝑊 . In particular,

if 𝑝𝑖
△
= 𝑣𝑖 −

𝑈∗
v−𝑈∗

v−𝑊
∣𝑊 ∣ ≥ 0 for any 𝑖, 𝑝𝑖 = 𝑝𝑖 will be the

solution.
Proof: See Appendix A.

It can be seen that the payment is split in such a way that the
profits are shared among the winners as equally as possible.
Different from the VCG pricing strategy which sometimes
may yield low revenue or even zero revenue, such a pricing
strategy always guarantees that the seller receives revenue as
much as 𝑈∗

v−𝑊 . Moreover, if some losers collude to beat the
winners by raising their bids, they will have to pay more
than 𝑈∗

v−𝑊 ; however, the payment is already beyond what the

4In a second-price auction, the bidder with the highest bid wins the
commodity, and pays the amount of money equal to the second highest bid.
It is well-known that submitting bids equal to their true valuations is the
dominant strategy [14], since the buyer may end up with paying more money
than what it is actually worth if he/she submits a bid higher than the true
valuation, and may lose the opportunity to win if he/she submits a lower one.
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band is actually worth to them, and as a result, loser collusion
is completely eliminated. Nevertheless, users can still benefit
from the sublease collusion, and hence we call the pricing
strategy in (5) the partially collusion-resistant pricing strategy.

In order to find a fully collusion-resistant pricing strategy,
we have to analyze how sublease collusion takes place, and
add more constraints accordingly. It happens when a subset
of the winners 𝑊𝐶 ⊆ 𝑊 subleases the band to a subset
of the losers 𝐿𝐶 ⊆ 𝐿, where 𝐿 = {1, 2, . . . , 𝑁} ∖ 𝑊
denotes the set of all losers. The necessary condition for
the sublease collusion is

∑
𝑖∈𝑊𝐶

𝑝𝑖 <
∑

𝑖∈𝐿𝐶
𝑣𝑖, so that

they can find a sublease price in between acceptable to both
parties. Given any colluding-winner subset 𝑊𝐶 ⊆ 𝑊 , the
potential users who may be interested in subleasing the band
should have no mutual interference with the remaining winners
𝑊 ∖ 𝑊𝐶 ; otherwise, the band turns out to be unusable.
Denote the set of all such potential users by 𝐿(𝑊 ∖ 𝑊𝐶),

i.e., 𝐿(𝑊 ∖ 𝑊𝐶)
△
= {𝑖 ∈ 𝐿∣𝐶𝑖𝑗 = 0, ∀𝑗 ∈ 𝑊 ∖ 𝑊𝐶}.

Therefore, as long as prices are set such that
∑

𝑖∈𝑊𝐶
𝑝𝑖 ≥

max𝐿𝐶∈𝐿(𝑊∖𝑊𝐶)

∑
𝑖∈𝐿𝐶

𝑣𝑖, there will be no sublease collu-
sion. Note that max𝐿𝐶∈𝐿(𝑊∖𝑊𝐶)

∑
𝑖∈𝐿𝐶

𝑣𝑖 is the maximum
system utility 𝑈∗

v𝐿(𝑊∖𝑊𝐶)
which can be obtained by solving

the optimal allocation problem within the user set 𝐿(𝑊 ∖𝑊𝐶),
thus the optimum collusion-resistant pricing strategy is the
solution to the following problem,

max
{𝑝𝑖∈[0,𝑣𝑖], 𝑖∈𝑊}

∏
𝑖∈𝑊

(𝑣𝑖 − 𝑝𝑖),

s.t.
∑
𝑖∈𝑊𝐶

𝑝𝑖 ≥ 𝑈∗
v𝐿(𝑊∖𝑊𝐶)

, ∀𝑊𝐶 ⊆𝑊.
(7)

When 𝑊𝐶 =𝑊 , the constraint reduces to
∑

𝑖∈𝑊 𝑝𝑖 ≥ 𝑈∗
v−𝑊 ,

which incorporates the constraint in (5) as a special case.
There are 2∣𝑊 ∣ − 1 constraints in total because each of
them corresponds to a subset 𝑊𝐶 ⊆ 𝑊 except 𝑊𝐶 = ∅.
From another perspective, this actually takes into consideration
of virtual bidders consisting of both winners and losers, in
contrast to the previous pricing strategy where only those
consisting of losers are considered.

C. Interference Matrix Disclosure

So far, our auction mechanism is based on the assumption
that the underlying interference matrix C reflects the true
mutual interference relationships between secondary users.
However, since C comes from secondary users’ own reports,
it is quite possible that the selfish users manipulate this
information just as what they may do with their bids. If
cheating could help a loser become a winner, or help a
winner pay less, the selfish users would have incentives to do
so, which would compromise the efficiency of the spectrum
auction. Also, the cheating behavior may happen individually
or in a collusive way. Therefore, we have to carefully consider
whether they have such an incentive to deviate, and if so, how
to fix the potential problem. Here, we assume there are no
malicious users who determine to do harm to others or even
the whole system.

In order to obtain the matrix C, the spectrum broker
has to collect information from secondary users. Secondary
users may report their locations in terms of coordinates,

and the spectrum broker calculates the matrix according to
their distances. In this way, secondary users do not have
much freedom to fake an interference relationship in favor of
themselves. Alternatively, secondary users may directly inform
the spectrum broker about who are their neighbors, and hence
they are able to manipulate the matrix, either by concealing
an existing interference relationship or by fabricating an
interference relationship that actually does not exist.

When secondary users have little information about others,
they will misrepresent the interference relationships only if
they do not get punished, even in the worst case. Assume
user 𝑗 lies about 𝐶𝑗𝑘 . When users 𝑗 and 𝑘 do not mutually
interfere, i.e., 𝐶𝑗𝑘 = 0, but user 𝑗 claims 𝐶𝑗𝑘 = 1, he/she
may lose an opportunity of being a winner since an extra
interference constraint is added; on the other hand, if 𝐶𝑗𝑘 = 1
but user 𝑗 claims 𝐶𝑗𝑘 = 0, user 𝑗 may end up winning the
band together with user 𝑘, but the band cannot be used at all
due to strong interference. In short, the worst-case analysis
suggests secondary users have no incentive to cheat whenever
information is limited.

When secondary users somehow have more information
about others, they may distort the information in a more
intelligent way, that is, they can choose when to cheat and
how to cheat. Nevertheless, by investigating whether user 𝑗 is
better off by misrepresenting 𝐶𝑗𝑘 , we show that truth-telling
is an equilibrium from which no individual would have the
incentive to deviate unilaterally. We discuss all possible
situations in what follows.

1) Under the condition that user 𝑗 is supposed to be a loser.
1a. Claim 𝐶𝑗𝑘 = 1 against the truth 𝐶𝑗𝑘 = 0. By doing
this, user 𝑗 actually introduces an additional interference
constraint to himself/herself, but since user 𝑗 is already
a loser, nothing would change.
1b. Claim 𝐶𝑗𝑘 = 0 against the truth 𝐶𝑗𝑘 = 1. Removing
a constraint possibly helps user 𝑗 to become a winner,
but in the case, user 𝑘 is also one of the winners. Then,
user 𝑗 has to pay a band that turns out to be unusable
due to strong mutual interference with user 𝑘. This is
unacceptable to user 𝑗.

2) Under the condition that user 𝑗 is supposed to be a
winner.
2a. Claim 𝐶𝑗𝑘 = 0 against the truth 𝐶𝑗𝑘 = 1. If user 𝑗
is the only one among the winners that has interference
with user 𝑘, it would take user 𝑘 into the winner set,
which would in turn make user 𝑗 suffer from mutual
interference.
2b. Claim 𝐶𝑗𝑘 = 1 against the truth 𝐶𝑗𝑘 = 0. If user
𝑘 is not a winner, doing this would change nothing.
If user 𝑘 is indeed a winner, user 𝑗 takes the risk of
throwing himself/herself out of the winner set. Even if
user 𝑗 has enough information to secure he/she can still
be a winner, kicking out user 𝑘 does not necessarily
make user 𝑗 pay less.

In sum, no individual has the incentive to cheat even if there is
enough information to make the intelligent cheating possible.

Similar analysis can be applied to the situation where a
group of secondary users are able to distort the information
collusively, and we find that kick-out collusion defined in
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Section II is the only way that colluders gain an advantage.
If channels are symmetric, i.e., 𝐶𝑗𝑘 = 𝐶𝑘𝑗 always holds, we
can apply the following conservative rule: the spectrum broker
sets 𝐶𝑗𝑘 to 1 only when both users 𝑗 and 𝑘 confirm they
have mutual interference. With this trick applied, colluding
users cannot unilaterally fabricate an interference relationship
to an innocent user who is honest, and they will lose their
incentives to cheat because their efforts are in vain. If channels
are asymmetric, however, the spectrum broker will have to
ask secondary users to report their locations when there is a
discrepancy between the reported 𝐶𝑗𝑘 and 𝐶𝑘𝑗 .

In sum, we examine secondary users’ incentives to lie
about the underlying interference relationships, and conclude
no single user or group of users would have incentive to
cheat individually or collusively, when the spectrum broker
employ the conservative rule to determine the interference
matrix C from secondary users’ reports, under the condition
of symmetric channels.

D. Complexity Issues

We have to examine the complexity of the proposed mecha-
nism to see whether it is scalable when more users are involved
in the auction game. Since the fully collusion-resistant pricing
is a convex optimization problem when linear inequality con-
straints are known, they can be efficiently solved by numerical
methods such as the interior point method [26]. However, one
optimal allocation problem has to be solved to find the set of
winners 𝑊 , and another 2∣𝑊 ∣− 1 problems have to be solved
to obtain 𝑈∗

v𝐿(𝑊∖𝑊𝐶)
used in the constraints. Unfortunately,

the optimal allocation problem can be seen as the maximal
weighted independent set problem [27] in graph theory, which
is known to be NP-complete in general5 even for the simplest
case with 𝑣𝑖 = 1 for all 𝑖 [19]. As the computational complex-
ity becomes formidable when the number of users 𝑁 is large,
the proposed auction mechanism seems unscalable. Therefore,
near-optimal approximations with polynomial complexity are
of great interest.

Lemma 1: Define 𝝁v = [
√
𝑣1,

√
𝑣2, . . . ,

√
𝑣𝑁 ]𝑇 , the op-

timal allocation problem (4) with x∗ as its optimizer is
equivalent to the following optimization problem,

𝑈∗
v =max

y

(
𝝁𝑇

vy
)2
,

s.t. 𝑦𝑖𝑦𝑗 = 0, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1,

∣y∣2 = 1,

(8)

whose optimizer y∗ is given by 𝑦∗𝑖 = 𝑐
√
𝑣𝑖𝑥

∗
𝑖 where 𝑐 is a

normalization constant such that ∣y∗∣2 = 1.
Proof: See Appendix B.

The optimal allocation is no longer an integer programming
problem, but still difficult to solve because of the non-convex
feasible set [26]. To make it numerically solvable in polyno-
mial time, the SDP relaxation can be applied, which enlarges
the feasible set to a cone of positive semi-definite matrices
(which is a convex set) by removing some constraints [20]. To
this end, let S = yy𝑇 , i.e., 𝑆𝑖𝑗 = 𝑦𝑖𝑦𝑗 . The objective function

5It is true except some special cases, e.g., when the graph is perfect. The
graph corresponding to our optimal allocation problem does not possess those
special properties.

in (8) becomes 𝝁𝑇
vS𝝁v, and the two constraints turn out to

be 𝑆𝑖𝑗 = 0, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1 and tr(S) = 1, respectively.
The problem has to be optimized over {S ∈ S 𝑁 ∣S =
yy𝑇 ,y ∈ M𝑁×1}, or equivalently, {S ∈ S 𝑁 ∣S ર O,
rank(S) = 1}. Discarding the rank requirement while only
keeping the positive semi-definite constraint, we arrive at the
following convex optimization problem,

𝜗(C,v) =max
SરO

𝝁𝑇
vS𝝁v

s.t. tr(S) = 1,

𝑆𝑖𝑗 = 0, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1,

(9)

which is also known as the theta number [28][29] in graph
theory.

With the feasible set enlarged by relaxing a constraint to its
necessary condition, the new optimization problem provides
an upper bound to the original one: if the optimizer S∗ can
be decomposed as S∗ = y∗y∗𝑇 which means S∗ falls into
the original feasible set, y∗ will be the exact solution to (8);
otherwise, 𝜗(C,v) is an upper bound that is unattainable.
Fortunately, we verify by simulation that the near-optimal al-
gorithm with relaxation performs well: in our problem setting,
it gives the exact solution most of the time (> 90%), and even
for those unattainable cases, the bound is considerably tight
since the average gap is within 5%.

As the upper bound is quite tight, we can replace
𝑈∗
v𝐿(𝑊∖𝑊𝐶)

in (7) by its corresponding bound without sig-
nificantly changing the prices charged to each winner; but
we have to find out the optimizer x∗ when deciding who
are the winners. To this end, we examine whether S∗ can be
decomposed as the outer-product of a vector and itself, and
if yes, we can get y∗ and then map it back to x∗. A much
simpler way is to let 𝑥∗𝑖 = 1 if 𝑆∗

𝑖𝑖 ∕= 0 since Lemma 1 tells
us 𝑥∗𝑖 = 0 if and only if 𝑦∗𝑖 = 0, and then check whether
this allocation is interference-free or not6. Most of the time,
we will end up with the exact solution; and for those failed
trials, we could resort to other suboptimal algorithms such as
the greedy algorithm to find suboptimal allocation, or simply
solve the original problem directly.

E. Physical Interference Model

In this subsection, we extend our auction mechanism to the
situation where the physical model is employed to describe
mutual interference. Now, the optimal allocation becomes
social welfare maximization under physical interference con-
straints,

𝑈∗
v =max

x

𝑁∑
𝑖=1

𝑣𝑖𝑥𝑖,

s.t.
𝑁∑
𝑗=1

𝛼𝑗𝑖𝑥𝑗 ≤ 0, if 𝑥𝑖 = 1,

𝑥𝑖 = 0 or 1, 𝑖 = 1, 2, . . . , 𝑁.

(10)

Recall that those 𝛼’s are defined as 𝛼𝑖𝑖 = −1 and 𝛼𝑗𝑖 =
𝛽𝑔𝑗𝑖/𝑔𝑖𝑖, 𝑖 ∕= 𝑗 in Section II, which basically depend on

6In practice, as S∗ is solved by some numerical methods, the entries in
S∗ may not be strictly equal to 0. Thus, we can set 𝑆∗

𝑖𝑖 = 0 whenever ∣𝑆∗
𝑖𝑖∣

is smaller than a threshold, say 10−5.
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channel gains. Thus, the optimal allocation remains much
the same except that protocol interference constraints are
replaced by physical interference constraints. Pricing strategies
are similar, too.

Nevertheless, the SDP relaxation is a bit difficult because
the constraints are much more complicated than constraints
exerted by the protocol model. First, we replace the constraint
“
∑𝑁

𝑗=1 𝛼𝑗𝑖𝑥𝑗 ≤ 0 if 𝑥𝑖 = 1” by an equivalent but compact

form 𝑥𝑖

(∑𝑁
𝑗=1 𝛼𝑗𝑖𝑥𝑗

)
≤ 0, because 𝑥𝑖 is a binary integer

variable. Then, we can apply similar approaches, i.e., 𝑦𝑖 =
𝑐
√
𝑣𝑖𝑥𝑖 and 𝑆𝑗𝑖 = 𝑦𝑗𝑦𝑖, and finally get the following relaxed

optimization problem,

max
SરO

𝝁𝑇
vS𝝁v

s.t. tr(S) = 1,

𝑆𝑗𝑖 = 0, ∀𝑖, 𝑗 if 𝛼𝑗𝑖 > 1,
𝑁∑
𝑗=1

𝛼𝑗𝑖√
𝑣𝑗𝑣𝑖

𝑆𝑗𝑖 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁.

(11)

Note that when 𝛼𝑗𝑖 > 1, i.e., user 𝑗 has strong interference
on user 𝑖, user 𝑖 cannot transmit simultaneously with user 𝑗,
because if 𝑥𝑖 = 𝑥𝑗 = 1, we have

∑𝑁
𝑗=1 𝛼𝑗𝑖𝑥𝑗 ≥ 𝛼𝑗𝑖𝑥𝑗 +

𝛼𝑖𝑖𝑥𝑖 = 𝛼𝑗𝑖 − 1 > 0 which will violate the constraint. Hence,
the corresponding constraint is quite similar to that under the
protocol model. Moreover, compared with (9), the SDP relax-
ation under the physical model (11) incorporates additional
constraints reflecting the accumulation of interference power.

Additional difficulties rise when we recover the optimal
allocation vector x∗ from the optimizer S∗. The reason is that
under the protocol model we are able to map y∗ back to x∗

based on the converse part of Lemma 1, but it does not hold
any more under the physical model. However, we can still
exploit hints from y∗ to construct a near-optimal x̃ using the
greedy algorithm. Specifically, we sort 𝑦∗𝑖 /

√
𝑣𝑖 in a descending

order, and denote the sorted index as [𝑛(1), 𝑛(2), . . . , 𝑛(𝑁)];
for example, 𝑛(1) = argmax𝑖 𝑦𝑖/

√
𝑣𝑖. After initializing x̃ as

an all-zero vector and setting 𝑥𝑛(1) = 1, we set 𝑥𝑛(2) = 1 if
the resultant x̃ still satisfies the physical interference constraint
and 𝑥𝑛(2) = 0 otherwise. We determine binary values of
𝑥𝑛(𝑘), (𝑘 = 3, 4, . . . , 𝑁) one by one in the same way, and
finally obtain the vector x̃ which will be used as the allocation
vector.

IV. MULTI-BAND MULTI-WINNER AUCTION

It is more interesting to study the case when 𝑀 primary
users want to lease their unused bands or a single primary
user divides the band into 𝑀 sub-bands for lease. In other
words, there are 𝑀 bands (𝑀 > 1) available for secondary
users to lease. In this section, we extend our existing results
to the multi-band auction.

A. Multi-Band Auction Mechanism

Since usually there are a lot of secondary users competing
for the spectrum resources, it is unfair if some users can access
several bands while others are starved. In addition, if each
secondary user is equipped with a single radio, the physical
limitation will make it impossible to access several bands

simultaneously. Therefore, we require each user should lease
at most one band, and we further assume secondary users do
not care which band they get, i.e., any band’s value is 𝑣𝑖 to
user 𝑖.

Extending the one-band auction to a more general multi-
band one, we have to find the counterpart of the auction mech-
anism including the optimal allocation and pricing strategies.
As there are 𝑀 sets of winners 𝑊 1,𝑊 2, . . . ,𝑊𝑀 , we define
𝑀 vectors x1,x2, . . . ,x𝑀 correspondingly, where 𝑥𝑚𝑖 = 1
indicates user 𝑖 wins the 𝑚th band. Including the additional
constraint that each user cannot lease more than one band, we
have the 𝑀 -band optimal allocation as follows,

𝑈∗
v = max

x1,x2,...,x𝑀

𝑀∑
𝑚=1

𝑁∑
𝑖=1

𝑣𝑖𝑥
𝑚
𝑖 ,

s.t. 𝑥𝑚𝑖 + 𝑥𝑚𝑗 ≤ 1, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1, ∀𝑚,
𝑀∑

𝑚=1

𝑥𝑚𝑖 ≤ 1, ∀𝑖,

𝑥𝑚𝑖 = 0 or 1, 𝑖 = 1, 2, . . . , 𝑁 ;𝑚 = 1, 2, . . . ,𝑀.

(12)

In the multi-band auction, the set of losers becomes 𝐿 =
{1, 2, . . . , 𝑁} ∖∪𝑀

𝑗=1𝑊
𝑗 instead. Similar to the single-band

partially collusion-resistant pricing strategy, the winners of the
𝑚th band have to pay the highest rejected bid from the losers,
and the payment is split according to the NBS equilibrium,

max
{𝑝𝑖∈[0,𝑣𝑖], 𝑖∈𝑊𝑚}

∏
𝑖∈𝑊𝑚

(𝑣𝑖 − 𝑝𝑖),

s.t.
∑

𝑖∈𝑊𝑚

𝑝𝑖 = 𝑈∗
v−(

∪𝑀
𝑗=1

𝑊𝑗)
.

(13)

The single-band fully collusion-resistant pricing strategy can
be generalized too; for instance, the prices for the 𝑚th band
are determined by

max
{𝑝𝑖∈[0,𝑣𝑖], 𝑖∈𝑊𝑚}

∏
𝑖∈𝑊𝑚

(𝑣𝑖 − 𝑝𝑖),

s.t.
∑
𝑖∈𝑊𝐶

𝑝𝑖 ≥ 𝑈∗
v𝐿(𝑊𝑚∖𝑊𝐶)

, ∀𝑊𝐶 ⊆𝑊𝑚.

(14)

When 𝑀 = 1, the two pricing strategies reduce to the single-
band case.

B. The SDP Relaxation for the Multi-Band Auction

In order to apply the SDP relaxation to the multi-band

optimal allocation, we first introduce auxiliary variables 𝝌
△
=[(

x1
)𝑻

,
(
x2
)𝑻

, . . . ,
(
x𝑴

)𝑻 ]𝑻
and 𝝂

△
= 1𝑀×1⊗v. Notice

that for binary integers, the constraint
∑𝑀

𝑚=1 𝑥
𝑚
𝑖 ≤ 1 is

equivalent to 𝑥𝑚𝑖 + 𝑥𝑘𝑖 ≤ 1, ∀𝑚 ∕= 𝑘. Hence, the optimal
allocation (12) can be written in an equivalent form,

max
𝝌

𝑀𝑁∑
𝑖=1

𝜈𝑖𝜒𝑖,

s.t. 𝜒𝑖 + 𝜒𝑗 ≤ 1, ∀𝑖, 𝑗 if Ξ𝑖𝑗 = 1,

𝜒𝑖 = 0 or 1, 𝑖 = 1, 2, . . . ,𝑀𝑁,

(15)
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where

Ξ
△
=

⎡⎢⎢⎢⎣
C I ⋅ ⋅ ⋅ I
I C ⋅ ⋅ ⋅ I
...

...
. . .

...
I I ⋅ ⋅ ⋅ C

⎤⎥⎥⎥⎦ (16)

is the effective interference matrix. Viewed as a single-band
auction with 𝑀𝑁 users, the optimal allocation is upper
bounded by the theta number,

𝜗(Ξ,𝝂) =max
SરO

𝝁𝑇
𝝂S𝝁𝝂

s.t. tr(S) = 1,

𝑆𝑖𝑗 = 0, ∀𝑖, 𝑗 if Ξ𝑖𝑗 = 1.

(17)

This problem is optimized over S ∈ S 𝑀𝑁 which has
1
2𝑀𝑁(𝑀𝑁 +1) degrees of freedom; however, there is some
redundancy resulting from structural symmetry of the prob-
lem: according to our assumption that all bands are equivalent,
interchanging the winners of band 𝑚 and band 𝑘 makes no

difference. In general, if 𝝌 =
[(
x1
)𝑇

,
(
x2
)𝑇

, . . . ,
(
x𝑀
)𝑇 ]𝑇

is an optimal solution, for any permutation 𝜋, 𝝌(𝜋) =[(
x𝜋(1)

)𝑇
,
(
x𝜋(2)

)𝑇
, . . . ,

(
x𝜋(𝑀)

)𝑇 ]𝑇
will also be an opti-

mal solution.
Similar to the one-to-one mapping in one-

band optimal allocation proved by Lemma 1, we

define 𝜼 = 𝑐
[√

𝜈1𝜒1,
√
𝜈2𝜒2, . . . ,

√
𝜈𝑀𝑁𝜒𝑀𝑁

] △
=[(

y1
)𝑇

,
(
y2
)𝑇

, . . . ,
(
y𝑀
)𝑇 ]𝑇

with 𝑐 chosen such

that ∣𝜼∣2 = 1. Due to symmetry, if S = 𝜼𝜼𝑇 is a
solution to (17), so will be S(𝜋) = 𝜼(𝜋)𝜼𝑇 (𝜋) where

𝜼(𝜋) =
[(
y𝜋(1)

)𝑇
,
(
y𝜋(2)

)𝑇
, . . . ,

(
y𝜋(𝑀)

)𝑇 ]𝑇
. The average

of all 𝑀 ! permutations is

S =
1

𝑀 !

∑
𝜋

S(𝜋) =
1

𝑀

⎡⎢⎢⎢⎣
S𝐷 S𝐹 ⋅ ⋅ ⋅ S𝐹

S𝐹 S𝐷 ⋅ ⋅ ⋅ S𝐹

...
...

. . .
...

S𝐹 S𝐹 ⋅ ⋅ ⋅ S𝐷

⎤⎥⎥⎥⎦ , (18)

where the diagonal blocks are

S𝐷 =

𝑀∑
𝑚=1

(y𝑚) (y𝑚)
𝑇
, (19)

and the off-diagonal blocks are

S𝐹 =
1

𝑀 − 1

𝑀∑
𝑚=1

𝑀∑
𝑘=1,𝑘 ∕=𝑚

(y𝑚)
(
y𝑘
)𝑇

. (20)

As shown by the following proposition, we only have to
optimize over two small matrices S𝐷 and S𝐹 rather than the
large-dimension matrix S in (17). Just as the one-band case,
the idea is to relax the specific structures of matrices S𝐷 and
S𝐹 by necessary conditions that they should satisfy in terms
of positive semi-definite properties.

Proposition 2: The multi-band optimal allocation (12) can
be relaxed by the following optimization problem,

max
S𝐷,S𝐹

𝝁𝑇
v (S𝐷 + (𝑀 − 1)S𝐹 )𝝁v (21)

s.t. tr(S𝐷) = 1, (22)

(𝑆𝐷)𝑖𝑗 = 0, ∀𝑖, 𝑗 if 𝐶𝑖𝑗 = 1, (23)

(𝑆𝐹 )𝑖𝑖 = 0, ∀𝑖, (24)

S𝐷 ર O, S𝐷 − S𝐹 ર O, (25)

S𝐷 + (𝑀 − 1)S𝐹 ર O. (26)

Proof: The objective function is 𝝁𝑇
𝝂S𝝁𝝂 . Since S =

1
𝑀 (I𝑀×𝑀 ⊗ S𝐷 + (1𝑀×𝑀 − I𝑀×𝑀 )⊗ S𝐹 ) and 𝝁𝝂 =
1𝑀×1 ⊗ 𝝁v, we apply the properties of Kronecker products
[30],

𝝁𝑇
𝝂S𝝁𝝂 =

1

𝑀
((1𝑇

𝑀×1I𝑀×𝑀1𝑀×1)⊗ (𝝁𝑇
vS𝐷𝝁v) +

(1𝑇
𝑀×1(1𝑀×𝑀 − I𝑀×𝑀 )1𝑀×1)⊗ (𝝁𝑇

vS𝐹𝝁v))

= 𝝁𝑇
v (S𝐷 + (𝑀 − 1)S𝐹 )𝝁v.

(27)

Because ∣𝜼∣2 = 1, we have 1 = 𝜼𝑇𝜼 =∑𝑀
𝑚=1 (y

𝑚)
𝑇
(y𝑚) =

∑𝑀
𝑚=1 tr

(
(y𝑚) (y𝑚)

𝑇
)

= tr(S𝐷),
and hence we obtain constraint (22).

Moreover, the interference constraints in the original prob-
lem (12) imply that 𝑦𝑚𝑖 𝑦

𝑚
𝑗 = 0 if 𝐶𝑖𝑗 = 1 and 𝑦𝑚𝑖 𝑦

𝑘
𝑖 = 0

∀𝑚 ∕= 𝑘, according to the relationship of x and y established
in Lemma 1. Hence, ∀𝑖, 𝑗 such that 𝐶𝑖𝑗 = 1, (𝑆𝐷)𝑖𝑗 =∑𝑀

𝑚=1 𝑦
𝑚
𝑖 𝑦

𝑚
𝑗 = 0, which is the constraint (23). Constraint

(24) can be proved in a similar way.
The final step is the SDP relaxation. To show a matrix

S ∈ S 𝑁 is positive semi-definite, we prove by definition
that z𝑇Sz ≥ 0 for any vector z ∈ M𝑁×1. Given any vector
z, define scalars 𝑧𝑚 = z𝑇y𝑚,𝑚 = 1, 2, . . . ,𝑀 . Then,

z𝑇S𝐷z =
𝑀∑

𝑚=1

(𝑧𝑚)2 ≥ 0. (28)

In addition,

z𝑇 (S𝐷 − S𝐹 )z =
𝑀∑

𝑚=1

(𝑧𝑚)2 − 1

𝑀 − 1

𝑀∑
𝑚=1

𝑀∑
𝑘=1,𝑘 ∕=𝑚

𝑧𝑚𝑧𝑘

=
1

𝑀 − 1

(
𝑀

𝑀∑
𝑚=1

(𝑧𝑚)2 −
𝑀∑

𝑚=1

𝑀∑
𝑘=1

𝑧𝑚𝑧𝑘

)

=
1

𝑀 − 1

⎛⎝𝑀 𝑀∑
𝑚=1

(𝑧𝑚)2 −
(

𝑀∑
𝑚=1

𝑧𝑚

)2
⎞⎠ ≥ 0,

(29)

where 𝑀
∑𝑀

𝑚=1(𝑧
𝑚)2 ≥

(∑𝑀
𝑚=1 𝑧

𝑚
)2

follows the Cauchy-
Schwartz inequality. Also,

z𝑇 (S𝐷 + (𝑀 − 1)S𝐹 )z =

𝑀∑
𝑚=1

(𝑧𝑚)2 +

𝑀∑
𝑚=1

𝑀∑
𝑘=1,𝑘 ∕=𝑚

𝑧𝑚𝑧𝑘

=

𝑀∑
𝑚=1

𝑀∑
𝑘=1

𝑧𝑚𝑧𝑘 =

(
𝑀∑

𝑚=1

𝑧𝑚

)2

≥ 0.

(30)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 11, 2009 at 13:06 from IEEE Xplore.  Restrictions apply. 



WU et al.: A SCALABLE COLLUSION-RESISTANT MULTI-WINNER COGNITIVE SPECTRUM AUCTION GAME 3813

Therefore, matrices S𝐷 , S𝐷 −S𝐹 , and S𝐷 + (𝑀 − 1)S𝐹 are
all positive semi-definite.

We verify by simulation that this upper bound is also tight
and hence can be employed in our auction to reduce com-
plexity. As the new optimization problem is optimized over
two symmetric matrices S𝐷,S𝐹 ∈ S 𝑁 , the total number of
degrees of freedom is 𝑁(𝑁+1), which is significantly smaller
than that of direct relaxation 1

2𝑀𝑁(𝑀𝑁 + 1). Roughly
speaking, degrees of freedom, as an important factor affecting
the computational complexity, are reduced from 𝑂(𝑀2𝑁2) to
𝑂(𝑁2).

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
collusion-resistant multi-winner spectrum auction mechanisms
by computer experiments. Consider a 1000×1000 m2 area, in
which 𝑁 secondary users are uniformly distributed. Assume
each secondary user is a cognitive base station with 𝑅𝐼 -
meter coverage radius, and according to the protocol model,
two users at least 2𝑅𝐼 meters away can share the same
band without mutual interference. We use two values for 𝑅𝐼 :
𝑅𝐼 = 150 for a light-interference network, and 𝑅𝐼 = 350 for
a heavy-interference network. The valuations of different users
{𝑣1, 𝑣2, . . . , 𝑣𝑁} are assumed to be i.i.d. random variables
uniformly distributed in [20, 30].

We consider the one-band auction, i.e., 𝑀 = 1. Fig. 2
shows the seller’s revenue versus the number of secondary
users when different auction mechanisms are employed. The
result is averaged over 100 independent runs, in which
the locations and valuations of the 𝑁 secondary users are
generated randomly with uniform distribution. As shown in
the figure, directly applying the second-price scheme under-
utilizes spectrum resources, and the VCG mechanism also
suffers from low revenue. The proposed collusion-resistant
methods, however, significantly improve the primary user’s
revenue, e.g., nearly 15% increase compared to the VCG
outcome when 𝑅𝐼 = 350, and 30% increase when 𝑅𝐼 = 150.
This means the proposed algorithms have better performance
when more secondary users are admitted to lease the band
simultaneously.

Moreover, the proposed auction mechanisms can effectively
combat user collusion. We use the percentage of the system
utility taken away by colluders to represent the vulnerability
to sublease colluding attacks. Fig. 3 demonstrates the results
from 100 independent runs. For example, when 𝑅𝐼 = 150
and there are 20% colluders, colluders may steal away up to
10% of the system utility with the VCG pricing mechanism,
and much more profits could be taken away by colluders
if more secondary users become colluders. To protect the
primary user’s benefit, collusion-resistant mechanisms can
be applied. As show in the figure, the partially collusion-
resistant pricing strategy may be not as good as the VCG
mechanism on average under some circumstances because it
cannot completely remove sublease collusion, but it makes
the worst-case colluding gains drop considerably; for instance,
when 𝑅𝐼 = 150 and all users are able to collude, more than
half of the system utility could be taken away if the VCG
pricing is used, but only 22% with the partially collusion-
resistant pricing method. The fully collusion-resistant pricing
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Fig. 2. Seller’s revenue when different auction mechanisms are employed.
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Fig. 3. Normalized collusion gains under different auction mechanisms
versus the percentage of colluders in a spectrum auction with 𝑁 = 20
secondary users.

strategy, as expected, completely eliminates collusion, and
hence is an ideal choice when there is a risk of sublease
collusion.

The performance of the near-optimal algorithm is presented
in Fig. 4. As shown by the simulation results, the near-optimal
algorithm can yield the exact solution in more than 90% of
the total runs. Even for those that the near-optimal algorithm
fails to return the exact solution, it can still yield a tight
upper bound with the average difference less than 5%; to show
the robustness of the algorithm, we further provide the 90%
confidence intervals (i.e., the range that 90% of the data fall
in), which show that the gap between the near-optimal solution
and the exact solution is within 10%.

Finally, we show the reduction of complexity in terms of the
processing time when optimization is done in MATLAB7. In

7To solve the SDP problem, CVX software [31], a MATLAB-based
software for disciplined convex optimization, is employed.
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Fig. 4. The percentage of total trials that the near-optimal algorithm yields
the exact solution (upper), and the average difference with 90% confidence
intervals (i.e., from 5% to 95%) between the near-optimal solution and the
exact solution for those failed trials (middle and lower, for 𝑅𝐼 = 150 and
350, respectively).

Fig. 5, the processing time of solving the optimal allocation
problem is compared with that of solving the near-optimal
allocation problem in 100 independent runs, when 𝑅𝐼 = 350
and the number of users is 𝑁 =20, 30, and 40, respectively.
With 𝑁 increasing, the time to find the optimal solution
increases dramatically, whereas the time to find an near-
optimal solution using the SDP relaxation only increases
slightly. Moreover, the processing time of the optimal al-
gorithm fluctuates considerably in different realizations, but
the processing time with the SDP relaxation shows small
variation. Next, we show for multi-band allocation, applying
relaxation with reduced dimension (given in Proposition 2)
can further reduce the complexity of the straightforward
relaxation. We fix 𝑁 = 40, increase the number of bands
𝑀 from 2 up to 6, and present the average of processing time
in 100 independent runs in Fig. 6. As shown in the figure, the
complexity results in terms of processing time are consistent
with the analysis in the previous section, that is, solving the
near-optimal allocation using reduced-dimension relaxation is
more efficient when 𝑀 is large.

VI. CONCLUSIONS

In this paper, we present a novel multi-winner auction game
for the spectrum auction scenario in cognitive radio networks,
in which secondary users can lease some temporarily unused
bands from primary users. As this kind of auction does
not exist in the literature where commodities are usually
quantity-limited, suitable auction mechanisms are developed
to guarantee full efficiency of the spectrum utilization, yield
higher revenue to primary users, and help eliminate user
collusion. To make the proposed scheme scalable, the SDP re-
laxation is applied to get a near-optimal solution in polynomial
time. Moreover, we extend the one-band auction mechanism
to the multi-band case. Simulation results are presented to
demonstrate performance and complexity of proposed auction
mechanisms.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let 𝑞𝑖 = 𝑣𝑖 − 𝑝𝑖 for 𝑖 ∈ 𝑊 and use the fact∑
𝑖∈𝑊 𝑣𝑖 = 𝑈∗

v , the optimization problem (5) is equivalent to
the following convex optimization problem

min
{𝑞𝑖∈[0,𝑣𝑖], 𝑖∈𝑊}

−
∑
𝑖∈𝑊

ln 𝑞𝑖,

s.t.
∑
𝑖∈𝑊

𝑞𝑖 = 𝑈∗
v − 𝑈∗

v−𝑊
△
= Δ𝑈.

(A.31)
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After introducing the Lagrange multipliers 𝜆 and 𝜇𝑖 ≥ 0, 𝑖 ∈
𝑊 , the Lagrangian function is

𝐿(q, 𝜆,𝝁) = −
∑
𝑖∈𝑊

ln 𝑞𝑖+𝜆(
∑
𝑖∈𝑊

𝑞𝑖−Δ𝑈)+
∑
𝑖∈𝑊

𝜇𝑖(𝑞𝑖− 𝑣𝑖),

(A.32)
from which Karush-Kuhn-Tucker (KTT) conditions [26] can
be obtained as follows,

𝑞𝑖 =
1

𝜆+ 𝜇𝑖
, 𝜇𝑖 ≥ 0, 𝜇𝑖(𝑞𝑖−𝑣𝑖) = 0,

∑
𝑖∈𝑊

𝑞𝑖 = Δ𝑈. (A.33)

Define 𝜌 = 1
𝜆 . For those 𝑖’s such that 𝑞𝑖 = 𝑣𝑖, 𝑞𝑖 = 1

𝜆+𝜇𝑖
≤

1
𝜆 = 𝜌; for other 𝑖’s such that 𝑞𝑖 < 𝑣𝑖, the third condition
implies 𝜇𝑖 = 0, and thus 𝑞𝑖 = 1

𝜆+𝜇𝑖
= 𝜌. Therefore, the

solution is
𝑞𝑖 = min(𝑣𝑖, 𝜌), (A.34)

with 𝜌 chosen such that the last condition in (A.33) is
satisfied. Finally, 𝑝𝑖 = 𝑣𝑖 − 𝑞𝑖 yields (6). In particular, if
Δ𝑈
∣𝑊 ∣ ≤ min𝑖(𝑣𝑖), 𝜌 = Δ𝑈

∣𝑊 ∣ and 𝑝𝑖 = 𝑣𝑖−𝜌 will be the solution.

APPENDIX B
PROOF OF LEMMA 1

Proof: Assume 𝑊 ∗ and 𝑉 ∗ are the support of the
optimizers x∗ and y∗, respectively, i.e., 𝑖 ∈ 𝑊 ∗ if and only
if 𝑥∗𝑖 ∕= 0, and 𝑖 ∈ 𝑉 ∗ if and only if 𝑦∗𝑖 ∕= 0.

Note that the constraint 𝑥𝑖 + 𝑥𝑗 ≤ 1 can also be written as
𝑥𝑖𝑥𝑗 = 0 for binary integers. Define 𝑦𝑖 =

√
𝑣𝑖𝑥

∗
𝑖√∑

𝑘∈𝑊∗ 𝑣𝑘
whose

norm ∣y∣2 equals 1, and moreover, for 𝑖, 𝑗 such that 𝐶𝑖𝑗 = 1,
𝑦𝑖𝑦𝑗 =

√
𝑣𝑖𝑣𝑗∑

𝑘∈𝑊∗ 𝑣𝑘
𝑥∗𝑖 𝑥

∗
𝑗 = 0. Satisfying both constraints, y is

in the feasible set, which should yield a value not exceeding
the optimum,

𝑈∗
v ≥ (𝝁𝑇

vy
)2

=

( ∑
𝑖∈𝑊∗ 𝑣𝑖√∑
𝑘∈𝑊∗ 𝑣𝑘

)2

=
∑
𝑖∈𝑊∗

𝑣𝑖 = 𝑈∗
v .

(B.35)
On the other hand, knowing y∗ is the optimizer, we can

confine the problem to 𝑉 ∗ as follows,

max
𝑦𝑖,𝑖∈𝑉 ∗

(∑
𝑖∈𝑉 ∗

√
𝑣𝑖𝑦𝑖

)2

,

s.t.
∑
𝑖∈𝑉 ∗

𝑦2𝑖 = 1.

(B.36)

According to the Cauchy-Schwartz inequality,(∑
𝑖∈𝑉 ∗

√
𝑣𝑖𝑦𝑖

)2 ≤ (∑
𝑖∈𝑉 ∗ 𝑣𝑖

) (∑
𝑖∈𝑉 ∗ 𝑦2𝑖

)
=
∑

𝑖∈𝑉 ∗ 𝑣𝑖,
where the equality holds when 𝑦∗𝑖 = 𝑐

√
𝑣𝑖 (𝑖 ∈ 𝑉 ∗) for some

constant 𝑐. Furthermore, it is impossible to find 𝑖, 𝑗 ∈ 𝑉 ∗

such that 𝐶𝑖𝑗 = 1; otherwise, 𝑦∗𝑖 𝑦
∗
𝑗 ∕= 0 will violate the

constraint. This implies 𝑉 ∗ is also a compatible group of
users without interference, and we have

𝑈∗
v =

∑
𝑖∈𝑉 ∗

𝑣𝑖 ≤ 𝑈∗
v . (B.37)

Comparing (B.35) with (B.37), we conclude that 𝑈∗
v = 𝑈∗

v ,
and the optimizers are related by 𝑦∗𝑖 = 𝑐

√
𝑣𝑖𝑥

∗
𝑖 with the

normalization factor 𝑐.
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