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Abstract—Dynamic spectrum access has become a promising
approach to improve spectrum efficiency by adaptively coordi-
nating different users’ access according to spectrum dynamics.
However, users who are competing with each other for spectrum
may have no incentive to cooperate, and they may even exchange
false private information about their channel conditions in order
to get more access to the spectrum. In this paper, we propose a
repeated spectrum sharing game with cheat-proof strategies. By
using the punishment-based repeated game, users get the incen-
tive to share the spectrum in a cooperative way; and through
mechanism-design-based and statistics-based approaches, user
honesty is further enforced. Specific cooperation rules have
been proposed based on the maximum total throughput and
proportional fairness criteria. Simulation results show that the
proposed scheme can greatly improve the spectrum efficiency by
alleviating mutual interference.

Index Terms—Cognitive radio, open spectrum sharing, re-
peated game, cheat-proof strategy.

I. INTRODUCTION

W ITH the emergence of new wireless applications and
devices, the last decade has witnessed a dramatic in-

crease in the demand for radio spectrum, which has forced the
government agencies such as Federal Communications Com-
mission (FCC) to review their policies [1][2]. The traditional
rigid allocation policies by FCC have severely hindered the
efficient utilization of scarce spectrum. Hence, dynamic spec-
trum access, with the aid of cognitive radio technology [3], has
become a promising approach by breaking the paradigm and
enabling wireless devices to utilize the spectrum adaptively
and efficiently. There are two major classes of dynamic
spectrum access: flexible access in the licensed band, and
open sharing in the unlicensed band. The industrial, scientific,
and medical (ISM) radio band, in which WLAN networks,
bluetooth systems, cordless phones, and other novel wireless
devices coexist, demonstrates success and importance of open
sharing. Nevertheless, unlicensed sharing without regulation
usually leads to the overuse of the time/frequency/power units,
or the so-called “tragedy of the commons” [4]. To avoid such
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inefficient usage of the spectrum resources, as suggested in
[5], basic open access protocols/etiquettes have to be set by
either government or industry standardization, and the right to
use the spectrum should be only shared among those wireless
users who conform with the unlicensed protocols/etiquettes.

In order to fully utilize the limited spectrum resources, effi-
ciently and fairly sharing the spectrum among multiple users
becomes an important issue. There are some previous efforts
addressing this issue. The work in [6] examined the secondary
user access patterns to propose a feasible spectrum sharing
scheme. The authors in [7] proposed a primary prioritized
Markov dynamic spectrum access scheme to optimally coor-
dinate secondary users’ spectrum access and achieve a good
statistical tradeoff between efficiency and fairness. In [8], open
access of a group of links was scheduled in a centralized way
by a spectrum server. However, since multiple users compete
for the spectrum resources, they may have no incentive to
cooperate with each other, and can behave selfishly. Therefore,
game theory [9] is a proper and flexible tool to analyze the
interactions among selfish users [10]. In [11], game theory
was employed to resolve channel conflicts distributively by
associating the Nash equilibrium with a maximal coloring
problem for spectrum sharing. A local bargaining mechanism
was proposed in [12] to distributively optimize the efficiency
of spectrum allocation and maintain bargaining fairness among
secondary users. Auctions were proposed for sharing spectrum
among multiple users such that the interference was below a
certain level [13]. A real-time spectrum auction framework
was proposed in [14] to achieve a conflict-free allocation
which maximizes auction revenue and spectrum utilization.
Based on double-auction rules, belief-based dynamic pricing
approaches were developed in [15] and [16] to optimize the
overall spectrum efficiency while keeping the participating
incentives of the selfish users. In [17], the authors proposed a
repeated game approach to increase efficiency when multiple
primary users sell their bands. The repeated game was also
employed to model the open spectrum sharing problem in
[18] with the assumption that the channels are time-invariant.
In [19], iterative waterfilling power allocation was proposed
for Gaussian interference channels with frequency-selective
fading, and convergence was discussed in [20] under a more
general assumption that users updated the powers in an
asynchronous way. Some practical difficulties of the iterative
waterfilling method were circumvented in [21] by exchang-
ing “interference price” which took mutual interference into
consideration.

Although existing dynamic spectrum access schemes based
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on game theory have successfully enhanced spectrum effi-
ciency, in order to achieve more flexible spectrum access in
long-run scenarios, some basic questions still remain unan-
swered. First, the spectrum environment is constantly changing
and there is no central authority to coordinate the spectrum
access of different users. Thus, the spectrum access scheme
should be able to distributively adapt to the spectrum dy-
namics, e.g., channel variations, with only local observations.
Moreover, users competing for the open spectrum may have
no incentive to cooperate with each other, and they may
even exchange false private information about their channel
conditions in order to get more access to the spectrum.
Therefore, cheat-proof spectrum sharing schemes should be
developed to maintain the efficiency of the spectrum usage.

Motivated by the preceding, in this paper we propose
a cheat-proof etiquette for unlicensed spectrum sharing by
modeling the distributed spectrum access as a repeated game.
In the proposed game, punishment will be triggered if any
user deviates from cooperation, and hence users are enforced
to access the spectrum cooperatively. We propose two sharing
rules based on the maximum total throughput and propor-
tional fairness criteria, respectively; accordingly, two cheat-
proof strategies are developed: one provides players with the
incentive to be honest based on mechanism design theory [22],
and the other makes cheating nearly unprofitable by statistical
approaches. Therefore, the competing users are enforced to
cooperate with each other honestly. The simulation results
show that the proposed scheme can greatly improve the
spectrum efficiency under mutual interference.

The remainder of this paper is organized as follows. In
Section II, the system model for open spectrum sharing is
described. In Section III, we develop a punishment-based
repeated game for open spectrum sharing. The specific design
of cooperation rules and misbehavior detection are discussed
in Section IV. In Section V, we develop two cheat-proof
strategies for the proposed spectrum sharing rules. Simulation
results are shown in Section VI, and Section VII concludes
this paper.

II. SYSTEM MODEL

We consider a situation where K groups of unlicensed users
coexist in the same area and compete for the same unlicensed
spectrum band, as shown in Fig. 1. The users within the same
group attempt to communicate with each other, whose usage
of the spectrum will introduce interference to other groups.
For simplicity, we assume that each group consists of a single
transmitter-receiver pair, and that all the pairs are fully loaded,
i.e., they always have data to transmit. At time slot n, all pairs
are trying to occupy the spectrum, and the received signal at
the i-th receiver yi[n] can be expressed as

yi[n] =
K∑

j=1

hji[n]xj [n] + wi[n], i = 1, 2, . . . , K, (1)

where xj [n] is the transmitted information of the j-th pair,
hji[n](j = 1, 2, . . . , K; i = 1, 2, . . . , K) represents the chan-
nel gain from the j-th transmitter to the i-th receiver, and
wi[n] is the white noise at the i-th receiver. In the rest of the
paper, the time index n will be omitted wherever no ambiguity

Fig. 1. Illustration of open spectrum sharing.

is caused. We assume the channels are Rayleigh fading,
i.e., hji ∼ CN (0, σ2

ji), and distinct hji’s are statistically
independent. The channels are assumed to remain constant
during one time slot, and change independently from slot to
slot. The noise is independently identically distributed (i.i.d.)
with wi ∼ CN (0, N0), where N0 is the noise power. Limited
by the instrumental capability, the transmission power of the i-
th user cannot exceed his/her own peak power constraint PM

i ,
i.e., |xi[n]|2 ≤ PM

i at any time slot n.
Usually, there is no powerful central unit to coordinate

the spectrum access in the unlicensed band, and different
coexisting systems do not share a common goal to help
each other voluntarily. It is reasonable to assume that each
transmitter-receiver pair is selfish: pursuing higher self-interest
is the only goal for the wireless users. Such selfish behaviors
can be well analyzed by game theory. Therefore, we propose
to model the spectrum sharing game as follows:

Players: the K transmitter-receiver pairs,
Actions: each player can choose the transmission power

level pi in [0, PM
i ],

Payoffs: Ri(p1, p2, . . . , pK), the gain of transmission
achieved by the i-th player after power levels
p1, p2, . . . , pK have been chosen by individual play-
ers.

In general, the gain of transmission is a non-negative increas-
ing function of data throughput. For simplicity, we assume
that all the players share the same valuation model that the
gain of transmission equals data throughput. The results can
be easily extended to cases with different valuation models.
The averaged payoff of the i-th player can be approximated
by

Ri(p1, p2, . . . , pK) = log2

(
1+

pi|hii|2
N0+

∑
j �=i pj |hji|2

)
, (2)

when mutual interference is treated as Gaussian noise, e.g.,
when the code division multiple access (CDMA) technique is
employed.
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III. REPEATED SPECTRUM SHARING GAME

In this section, we find the equilibria of the proposed
spectrum sharing game. We assume that all the players are
selfish and none is malicious. In other words, players aim to
maximize their own interest, but will not jeopardize others
or even the entire system at their own cost. Because all
the selfish players try to access the unlicensed spectrum as
much as possible, severe competition often leads to strong
mutual interference and low spectrum efficiency. However,
since wireless systems coexist over a long period of time, the
spectrum sharing game will be played for multiple times, in
which the undue competition could be resolved by mutual trust
and cooperation. We propose a punishment-based repeated
game to boost cooperation among competing players.

A. One-shot game

First, we look into the one-shot game where players are
myopic and only care for the current payoff. The vector of
power levels (p∗1, p

∗
2, . . . , p

∗
K) is called a Nash equilibrium [9]

if and only if for all i = 1, 2, . . . , K and all possible power
level choices p′i ∈ [0, PM

i ],

Ri(p∗1, p
∗
2, . . . , p

∗
i , . . . , p

∗
K)≥Ri(p∗1, p

∗
2, . . . , p

′
i, . . . , p

∗
K) (3)

always holds. The Nash equilibrium, from which no individual
would have the incentive to deviate, provides a stable point in
which the system resides. For this one-shot spectrum sharing
game, the equilibrium occurs when every pair transmits at the
highest power level, as shown in the following proposition.

Proposition 1: The only Nash equilibrium for this one-shot
game is

(
PM

1 , PM
2 , . . . , PM

K

)
.

Proof: First, we show that
(
PM

1 , PM
2 , . . . , PM

K

)
is a

Nash equilibrium. According to the definition of the pay-
off (2), when p1, p2, . . . , pi−1, pi+1, . . . , pK are fixed, and
hence the interference power is fixed, the i-th player’s
payoff Ri(p1, p2, . . . , pK) grows as the power level pi in-
creases. Therefore, for any player i, deviating from PM

i

to any lower value will decrease the payoff, which makes(
PM

1 , PM
2 , . . . , PM

K

)
a Nash equilibrium.

Then, we show by contradiction that no other equilibria
exist. Assume that (p∗1, p

∗
2, . . . , p

∗
K) is any equilibrium other

than
(
PM

1 , PM
2 , . . . , PM

K

)
, which means at least one entry is

different, say p∗i �= PM
i . However, this player can always get

better off by deviating from p∗i to PM
i , which violates the

definition of a Nash equilibrium.
When channel states are fixed, substituting the equilibrium

strategy pi = PM
i for all i into (2) yields

RS
i (h1i, h2i, . . . , hKi) = log2

(
1 +

PM
i |hii|2

N0 +
∑

j �=i PM
j |hji|2

)
,

(4)
where the superscript ‘S’ stands for “selfish”. This is indeed
the only possible outcome of the one-shot game with self-
ish players. Furthermore, when channel fading is taken into
account, the expected payoff can be calculated by averaging
over all channel realizations,

rS
i = E{hji,j=1,...,K}

[
RS

i (h1i, h2i, . . . , hKi)
]
. (5)

In this paper, the payoff represented by the upper-case letter
is the utility under a specific channel realization, whereas the

payoff in the lower-case letter is the utility averaged over all
channel realizations.

Proposition 1 implies that the common open spectrum is
excessively exploited owing to lack of cooperation among
the selfish players. In order to maximize their own profit,
all the players always occupy the spectrum with maximum
transmission power, which, in turn, makes everyone suffer
from strong mutual interference. If the players can somehow
share the spectrum in a more cooperative and regulated
fashion, everyone will get better off because interference has
been greatly reduced. Since spectrum sharing lasts over quite
a long period of time, it can be seen as a game played for
numerous rounds, in which cooperation is made possible by
established individual reputation and mutual trust.

B. Repeated game

In open spectrum sharing, players cannot be “forced” to
cooperate with each other; instead, they must be self-enforced
to participate in cooperation. We propose a punishment-based
repeated game to provide players with the incentive for
cooperation.

First of all, we have to define the payoff for the repeated
game. Since players view the multiple rounds in the game as
a whole, the payoff of a repeated game is defined as the sum
of payoffs discounted over time [9],

Ui = (1 − δ)
+∞∑
n=0

δnRi[n], (6)

where Ri[n] is player i’s payoff at the n-th time slot, and
δ (0 < δ < 1) is the discount factor. When δ is closer to 1,
the player is more patient. Because players value not only the
current payoff but also the rewards in the future, they have to
constrain behavior in the present to keep a good credit history;
otherwise, a bad reputation may cost even more in the future.

In general, if players do not cooperate with each other, the
only reasonable choice is the one-shot game Nash equilibrium
with the expected payoff rS

i given in (5). However, if all
the players follow some predetermined rules to share the
spectrum, higher expected one-slot payoffs rC

i (‘C’ stands
for “cooperation”) may be achieved, i.e., rC

i > rS
i for i =

1, 2, . . . , K . For example, the cooperation rule may require
only several players access the spectrum simultaneously, and
hence mutual interference is greatly reduced. Nevertheless,
without any commitment, selfish players always want to
deviate from cooperation. One player can take advantage of
others by transmitting in the time slots which he/she is not
supposed to, and the instantaneous payoff at one specific slot is
a random variable denoted by RD

i (‘D’ stands for “deviation”).
Although it is not a stable equilibrium in the one-shot game,

cooperation is an equilibrium in the repeated game enforced
by the threat of punishment. Specifically, every player states
the threat to others: if anyone deviates from cooperation,
there will be no more cooperation forever. Such a threat,
also known as the “trigger” punishment [9], deters deviation
and helps maintain cooperation. For example, assume that
player i hesitates whether to deviate or not. Denote the
discounted payoff with deviation as UD

i , and that without
deviation as UC

i . As shown by the following proposition,
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the payoffs strongly converge to constants regardless of the
channel realizations. Then, for the sake of the player’s own
benefit, it is better not to deviate as long as rC

i > rS
i .

Proposition 2: As δ → 1, UD
i converges to rS

i almost
surely, and UC

i converges to rC
i almost surely.

Proof: First, we show that as δ → 1, the discounted
payoff defined in (6) is asymptotically equivalent to the
average of the one-time payoffs. By switching the order of
operations, we have

lim
δ→1

Ui = lim
δ→1

lim
N→+∞

1 − δ

1 − δN+1

N∑
n=0

δnRi[n]

= lim
N→+∞

N∑
n=0

(
lim
δ→1

δn − δn+1

1 − δN+1

)
Ri[n]

= lim
N→+∞

1
N + 1

N∑
n=0

Ri[n],

(7)

where the last equality holds according to L’hospital’s rule.
Assume that player i deviates at time slot T0. Then, the

payoffs {Ri[n], n = 0, 1, . . . , T0 − 1} are i.i.d. random
variables with mean rC

i , whose randomness comes from the
i.i.d. channel variations. Similarly, the payoffs {Ri[n], n =
T0 + 1, T0 + 2, . . .} are i.i.d. random variables with mean rS

i .
Deviating only benefits at time slot T0. According to the strong
law of large numbers [23], the payoff UD

i converges to its
mean rS

i almost surely.
On the other hand, if no deviation ever happens, the repeated

game always stay in the cooperative stage. By using the same
argument, UC

i converges to rC
i almost surely.

Because the selfish players always choose the strategy that
maximizes their own payoffs, they will keep cooperation if
UC

i (= rC
i ) > UD

i (= rS
i ), that is, all players are self-enforced

to cooperate in the repeated spectrum sharing game because
of punishment after any deviation.

Nevertheless, such a harsh threat is neither efficient nor nec-
essary. Note that not only the deviating player gets punished,
but the other “good” players also suffer from the punishment.
For example, if one player deviates by mistake or punishment
is triggered by mistake, there will be no cooperation due to
punishment, which results in lower efficiency for all players.
We have to review the purpose of the punishment. The aim of
punishment is more like “preventing” the deviating behaviors
from happening rather than punishing for revenge after devia-
tion. As long as the punishment is long enough to negate the
reward from a one-time deviation, no player has an incentive
to deviate. The new strategy, called “punish-and-forgive”, is
stated as follows: the game starts from the cooperative stage,
and will stay in the cooperative stage until some deviation
happens. Then, the game jumps into the punishment stage for
the next T − 1 time slots before the misbehavior is forgiven
and cooperation resumes from the T -th time slot. T is called
the duration of punishment. In the cooperative stage, every
player shares the spectrum in a cooperative way according to
their agreement; while in the punishment stage, players occupy
the spectrum non-cooperatively as they would do in the one-
shot game. The following proposition shows that cooperation
is a subgame perfect equilibrium, which ensures the Nash

optimality for subgames starting from any round of the whole
game.

Proposition 3: Provided rC
i > rS

i for all i = 1, 2, . . . , K ,
there is δ̄ < 1, such that for a sufficiently large discount
factor δ > δ̄, the game has a subgame perfect equilibrium
with discounted utility rC

i , if all players adopt the “punish-
and-forgive” strategy.

Proof: Because
(
PM

1 , PM
2 , . . . , PM

K

)
is a Nash equi-

librium for the one-shot game, transmitting with the power
vector

(
PM

1 , PM
2 , . . . , PM

K

)
in every time slot is one of the

Nash equilibria for the repeated game. Then, the proof of
this proposition follows the Folk Theorem with Nash threats
[9]. The theorem states that the “punish-and-forgive” strategy
yields a subgame perfect equilibrium for sufficiently patient
players (i.e., δ close to 1), whenever the game has a pure one-
shot Nash equilibrium. Using the one-shot Nash equilibrium
strategy as punishment and cooperating otherwise will enforce
all the players to cooperate.

The parameter T can be determined by analyzing the
incentive of the players. For example, we investigate under
what condition player i will lose the motivation to deviate
at time slot T0. Although cooperation guarantees an average
payoff rC

i at each time slot, the worst-case instantaneous
payoff could be 0. On the contrary, deviation will prompt the
instantaneous payoff at that slot. Assume the maximal profit
obtained from deviation is RD

i . If player i chooses to deviate,
punishment stage will last for the next T − 1 slots; otherwise,
cooperation will always be maintained. Thus, the expected
payoffs with and without deviation are bounded by

uD
i

�
= E[UD

i ] ≤ (1 − δ)·(
T0−1∑
n=0

δnrC
i + δT0RD

i +
T0+T−1∑
n=T0+1

δnrS
i +

+∞∑
n=T0+T

δnrC
i

)
,

(8)

and

uC
i

�
= E[UC

i ] ≥ (1−δ) ·
(

T0−1∑
n=0

δnrC
i + 0 +

+∞∑
n=T0+1

δnrC
i

)
, (9)

respectively. From selfish players’ point of view, the one with
the higher payoff is clearly the better choice. T should be large
enough to deter players from deviating such that uC

i > uD
i for

all i = 1, 2, . . . , K . Then, the necessary condition for T can
be solved as

T > max
i

log
(

δ − (1−δ)RD
i

rC
i −rS

i

)
log δ

, (10)

which can be further approximated by

T > max
i

RD
i

rC
i − rS

i

+ 1, (11)

by L’Hopital’s rule when δ is close to 1. If the tendency
to deviate is stronger (i.e., RD

i /(rC
i − rS

i ) is larger), the
punishment should be harsher (longer duration of punishment)
to prevent the deviating behavior.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 4, 2009 at 09:59 from IEEE Xplore.  Restrictions apply.



1926 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 4, APRIL 2009

IV. COOPERATION WITH OPTIMAL DETECTION

In this section, we will discuss the specific design of
the cooperation rules for spectrum sharing, as well as the
method to detect deviation. When designing the rules, we
assume that players can exchange information over a common
control channel. Based on the information, each individual
can independently determine who is eligible to transmit in the
current time slot according to the cooperation rule, and thus
the proposed scheme does not require a central management
unit.

Cooperative spectrum sharing can be designed in the fol-
lowing way: in one time slot, only a few players with small
mutual interference can access the spectrum simultaneously.
In the extreme case, only one player is allowed to occupy
the spectrum at one time slot, and the mutual interference
can be completely prevented. In this paper, we will limit
our attention to such orthogonal channel allocation for the
following reasons, and more general cooperation rules will be
studied in the future.

• It is quite simple, and the performance is good in an
environment where the interference level is medium to
high, as illustrated by the simulation results. This is the
case where wireless users concentrate in a small area,
e.g., a cluster of users inside an office building or within
a coffee house.

• If several players are allowed to access the spectrum
simultaneously, they will have to negotiate how much
power each one can use. However, for the orthogonal
assignment, if one player gets the exclusive right to
occupy the channel, the maximum power will be used.
Therefore, the action space boils down from a continuum
of power levels to a binary choice (either 0 or PM

i ),
which simplifies the problem.

• In order to decide who can access the spectrum, in-
formation like the channel gains is needed. If multiple
players are allowed to transmit in one time slot, the
whole channel state matrix {hji, j = 1, 2, . . . , K, i =
1, 2, . . . , K} is necessary to decide which players can
be grouped together. The total amount of exchanged
information is O(K2). On the contrary, the orthogonal
assignment is interference-free, and only the diagonal
entries {hii, i = 1, 2, . . . , K} have to be exchanged,
which means the overhead reduces to O(K).

• The orthogonal allocation also facilitates the detection of
deviating behavior. In general, the detector is required
to catch the deviation by distinguishing the ineligible
players from the players allowed to access the spectrum.
The detection becomes much easier in the orthogonal
assignment case. The only eligible player in the current
time slot will declare an event of deviation and trigger
the punishment once he/she finds that someone else is
also active in the unlicensed band.

The slot structure for the spectrum sharing is shown in
Fig. 2. Every slot is divided into three phases: in the first
phase, each player broadcasts information to others, such as
channel gains; in the second phase, each player collects all
the necessary information and decides whether to access the
spectrum or not, according to the cooperation rule; then the

Fig. 2. Proposed slot structure for spectrum sharing. Phase I: exchange
information; phase II: make decision; phase III: transmit and detect.

eligible player will occupy the spectrum in the third phase
of the slot. If the channel does not change too rapidly, the
length of a slot can be designed long enough to make the
overhead (the first and second phases) negligible. Since it
is necessary to detect the potential deviating behavior and
punish correspondingly, the eligible player cannot transmit all
the time during the third phase. Instead, the player has to
suspend his/her own transmission sometimes and listens to the
channel to catch the deviators. The eligible player transmits
and detects during the third phase: a portion of time is reserved
for detection, while the rest can be used for transmission.
When to perform detection during the slot is kept secret by
individuals; otherwise, the other players may take advantage
by deviating when the detector is not operating. Finally, if
detection shows someone is deviating, an alert message will
be delivered in the first phase of the next time slot.

A. Cooperation Criteria

There are numerous cooperation rules to decide which
players can have exclusive priority to access the channel, such
as the time division multiple access (TDMA). Out of many
possible choices, the cooperation rules must be reasonable
and optimal under some criteria, such as the maximum total
throughput criterion [24] and the proportional fairness crite-
rion [25].

Given a cooperation rule d, player i would have an expected
discounted payoff rCd

i . Denote D as the set of all possible co-
operation rules. The maximum total throughput criterion aims
to improve the overall system performance by maximizing the
sum of individual payoffs,

dMax = argmax
d∈D

K∑
i=1

rCd
i , (12)

whereas the proportional fairness criterion is known to maxi-
mize their product,

dPF = argmax
d∈D

K∏
i=1

rCd
i . (13)

The rule based on the maximum total throughput criterion
(MTT) is quite straightforward. In order to maximize the total
throughput, each time slot should be assigned to the player
that makes best use of it. Denote gi[n] = PM

i |hii[n]|2 as the
instantaneous received signal power of the i-th player at time
slot n, and {gi[n]} are i.i.d. exponentially-distributed random
variables with mean PM

i σ2
ii according to the assumption about

{hii[n]}. The allocation rule is to assign the channel to the
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player with the highest instantaneous received signal power,
i.e.,

d1(g1, g2, . . . , gK) = argmax
i

gi. (14)

Since only the information of the current time slot is necessary
and the same rule applies to every time slot, the time index n
has been omitted. The expected payoff is

rC1
i =

∫ +∞

0

log2

(
1 +

gi

N0

)
Pr(gi >maxj �=igj)f(gi)dgi, (15)

where f(gi) = 1
P M

i σ2
ii

exp(− gi

P M
i σ2

ii

) is the probability density
function of the random variable gi, and Pr(·) denotes the
probability that the statement within the parenthesis holds true.

The maximum total throughput criterion is optimal from
the system designer’s perspective; however, in a heterogeneous
situation where some players always have better channels than
others, the players under poor channel conditions may have
little chance to access the spectrum. To address the fairness
problem, another rule is proposed which allocates the spectrum
according to the normalized channel gain ḡi = gi/E[gi]
instead of the absolute values,

d2(ḡ1, ḡ2, . . . , ḡK) = argmax
i

ḡi. (16)

Note that all {ḡi, i = 1, 2, . . . , K} are exponentially-
distributed random variables with mean 1, the symmetry of
which implies that every player will have an equal chance
(1/K) to access the spectrum.

Proposition 4: The closed-form payoff with the proposed
rule (16) used can be shown as follows

rC2
i =

∫ +∞

0

log2

(
1 +

PM
i σ2

iiḡ

N0

)
exp(−ḡ) (1−exp(−ḡ))K−1 dḡ.

(17)
Proof: The probability distribution function of each ḡi is

F (ḡi) = 1− exp(−ḡi). By order statistics [26], the maximum
among the K i.i.d. random variables {ḡi, i = 1, 2, . . . , K} has
the distribution function FM (ḡ) = (1 − exp(−ḡ))K . Since
each player can be the one with the largest ḡi with probability
1/K due to symmetry, the expected payoff is

rC2
i =

∫ +∞

0

log2

(
1 +

PM
i σ2

iiḡ

N0

)
1
K

dFM (ḡ). (18)

Substituting FM (ḡ) yields the form of the payoff in (17).
Remarks:

• The proposed rule (16) is an approximation to the propor-
tional fairness criterion (13). gi can be decomposed into a
fixed component E[gi] and a fading component ḡi. When
the channel is constant without fading, i.e., gi = E[gi],
the proportional fairness problem becomes

max
{ωi}

K∏
i=1

ωi log2

(
1 +

E[gi]
N0

)

s.t.
K∑

i=1

ωi ≤ 1,

(19)

where ωi is the probability that the i-th player should
occupy the channel. The optimal solution is ωi = 1/K
for any i, which means an equal share is proportionally

fair. On the other hand, when only the fading part is
considered, since ḡi is completely symmetric for all
players, assigning resources to the player with the largest
ḡi will maximize the product of payoffs. The two aspects
suggest that rule (16) is a good approximation which
requires only the information of the current time slot, and
we will refer to it as the APF (approximated proportional
fairness) rule in the rest of the paper.

• The rule (16) can be extended to a more general case
which allocates the band according to weighted normal-
ized channel gain πiḡi, where πi is a weight factor re-
flecting a player’s priority for heterogeneous applications.

B. Optimal detection

The punishment-based spectrum sharing game can provide
all players with the incentive to obey the rules, since deviation
is deterred by the threat of punishment. Detection of the devi-
ating behavior is necessary to ensure the threat to be credible;
otherwise, selfish players will tend to deviate knowing their
misbehavior will not be caught. Because only one player can
occupy the spectrum at one time slot according to the proposed
cooperation rules, if that player finds that any other player
is deviating, the system will be alerted into the punishment
phase. There are several ways to detect whether the spectrum
resources are occupied by others; in this paper we assume the
player can listen to the channel from time to time using an
energy detector [27].

The detectors are generally imperfect, and some detection
errors are inevitable. There is the possibility that the detector
believes someone else is using the channel although in fact
nobody is. Triggering the game into punishment phase by
mistake, this false alarm event reduces the system efficiency,
and hence the probability of false alarm should be kept as
low as possible. Generally speaking, the performance of the
detector can be improved by increasing the detection time.
Nevertheless, the player cannot transmit and detect at the same
time because one cannot easily distinguish one’s own signal
from other players’ signal in the same spectrum. Therefore,
there is a tradeoff between transmission and detection: the
more time one spends on the detection, the less time one
reserves for data transmission.

Assume all the other parameters have been fixed, such as
the length of one time slot. Then, the question is how much
time in a slot should be used for detection. Let α denote the
ratio of time for detection, Ts the length of one slot, Ws the
bandwidth, and assume an energy detector with a threshold λ
is used, then the false alarm probability is [27]

ξ(α) =
Γ(αTsWs, αλ/2)

Γ(αTsWs)
, (20)

where Γ(·) and Γ(·, ·) are the gamma function and incomplete
gamma function, respectively.

We have shown that the expected discounted payoff ui

equals rC
i without considering the detection error. When

the imperfect detector is taken into account, the modified
discounted payoff, denoted by ǔi(α), will depend on α. The
expected throughput from the current time slot is (1 − α)rC

i ,
since only the remaining (1 − α) part of the duration can
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be employed for transmission. The system will jump into
the punishment stage with probability ξ(α) due to the false
alarm event, and stay in the cooperative stage with probability
1 − ξ(α). If the system stays in the cooperative stage, the
expected payoff in the future is ǔi(α) discounted by one time
unit; otherwise, the expected throughput in each time slot is rS

i

until cooperation resumes from the T -th slot, which yields the
payoff ǔi(α) discounted by T time units. Overall, the modified
discount utility should satisfy the following equation,

ǔi(α) =(1 − δ)(1 − α)rC
i + (1 − ξ(α))δǔi(α)

+ξ(α)

(
(1 − δ)

T−1∑
n=1

δnrS
i + δT ǔi(α)

)
,

(21)

from which ǔi(α) can be solved as

ǔi(α) =
(1 − δ)(1 − α)rC

i + (δ − δT )ξ(α)rS
i

1 − δ + (δ − δT )ξ(α)
. (22)

Note that the discounted payoff ǔi(α) is a convex combination
of (1 − α)rC

i and rS
i , and thus rS

i < ǔi(α) < rC
i for all 0 <

α < 1− rS
i /rC

i . Therefore, the imperfect detector will reduce
the utility from rC

i to a smaller value ǔi(α). However, ǔi(α) is
always larger than rS

i , which means that the players still have
the incentive to join in this repeated game and cooperate.

Similar to [28], the optimal α∗ that maximizes the mod-
ified discounted payoff (22) can be found by the first order
condition

∂ǔi(α)
∂α

= 0. (23)

Or equivalently, α∗ is the solution to the following equation

(1− δ + (δ − δT ))rC
i + ((1−α)rC

i − rS
i )(δ − δT )

ξ′(α)
ξ(α)

= 0,

(24)
where ξ′(α) is the derivative of ξ(α) with respect to α. Note
that by replacing rC

i with ǔi(α∗), the impact of imperfect
detection is incorporated into the game, and requires no further
considerations.

V. CHEAT-PROOF STRATEGIES

The repeated game discussed so far is based on the as-
sumption of complete and perfect information. Nevertheless,
information, such as the power constraints and channel gains,
is actually private information of each individual player, and
thus there is no guarantee that players will reveal their private
information honestly to others. If cheating is profitable, selfish
players will cheat in order to get a higher payoff. As the
proposed cooperation rules always favor the player with good
channel conditions, selfish players will tend to exaggerate their
situations in order to acquire more opportunities to occupy
the spectrum. Therefore, enforcing truth-telling is a crucial
problem, since distorted information would undermine the
repeated game.

In [18], a delicate scheme is designed to testify whether
the information provided by an individual player has been
revealed honestly. However, the method is complex and diffi-
cult to implement, especially under time-varying channels. In
our proposed allocation rules, much easier strategies can be
employed to induce truth-telling. When the MTT rule is used
for spectrum sharing, we design a mechanism to make players

self-enforced to reveal their true private information, and
when the APF rule is adopted, a scheme based on statistical
properties is proposed to discourage players from cheating.

A. Mechanism-design-based strategy

Since the MTT sharing rule assigns the spectrum resources
to the player who claims the highest instantaneous received
signal power, players tend to exaggerate their claimed values.
To circumvent the difficulty to tell whether the exchanged
information has been distorted or not, a better way is to make
players self-enforced to tell the truth.

Mechanism design is employed to provide players with
incentives to be honest. To be specific, the players claiming
high values are asked to pay a tax, and the amount of the
tax will increase as the claimed value increases, whereas the
players reporting low values will get some monetary com-
pensation. This is called “transfer” in Bayesian mechanism
design theory [22]. When the transfer of a player is negative,
he/she has to pay others; otherwise, he/she gets compensation
from others. Because players care for not only the gain of
data transmission but also their monetary balance, the overall
payoff is gain of transmission plus the transfer. In other words,
after introducing transfer functions, the spectrum sharing game
actually becomes a new game with original payoffs replaced
by the overall payoffs. By appropriately designing the transfer
function, the players can get the highest payoff only when they
claim their true private values.

According to the cooperative allocation rule, the private
information {g1, g2, . . . , gK} has to be exchanged among
players. Assume at one time slot, {g̃1, g̃2, . . . , g̃K} is a re-
alization of the random variables {g1, g2, . . . , gK}. Observing
his/her own private information, the i-th player will claim ĝi to
others, which may not be necessarily the same as the true value
g̃i. All the players claim the information simultaneously. Since
{ĝ1, ĝ2, . . . , ĝK} is common knowledge but {g̃1, g̃2, . . . , g̃K}
is not, the allocation decision and transfer calculation have
to be based on the claimed rather than the true values.
In the MTT spectrum sharing game, the player with index
d1(ĝ1, ĝ2, . . . , ĝK) defined in (14) can access the channel, and
thus data throughput at the current time slot can be written in
a compact form

Ri(g̃i, d1(ĝ1, ĝ2, . . . , ĝK))

=
{

log2(1 + g̃i

N0
) if d1(ĝ1, ĝ2, . . . , ĝK) = i

0 otherwise
.

(25)

The transfer of the i-th player in the proposed cheat-proof
strategy is defined as

ti(ĝ1, ĝ2, . . . , ĝK)
�
= Φi(ĝi) − 1

K − 1

K∑
j=1,j �=i

Φj(ĝj), (26)

where

Φi(ĝi)
�
= E

⎡
⎣ K∑

j=1,j �=i

Rj(gj, d1(g1, g2, . . . , gK))
∣∣∣∣gi = ĝi

⎤
⎦ .

(27)
Note the expectation is taken over all realizations of
{g1, g2, . . . , gK} except gi, since the player has no knowledge
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about others of the current time slot when deciding what to
claim. Φi(ĝi) is the sum of all other players’ expected data
throughput given that player i claims a value ĝi. Intuitively,
if user i claims a higher ĝi, he/she will gain a greater chance
to access the spectrum, and all the other players will have
a smaller spectrum share. However, higher payment may
negate the additional gain from more spectrum access through
bragging the channel gain. On the contrary, if claiming a
smaller ĝi, user i will receive some compensation at the
cost of less chance to occupy the spectrum. Therefore, it
is an equilibrium that each user reports his/her true private
information. A rigorous proof is provided in the following
proposition.

Proposition 5: In the proposed mechanism, it is an equilib-
rium that each player reports his/her true private information,
i.e., ĝi = g̃i, i = 1, 2, . . . , K .

Proof: To prove the equilibrium, it suffices to show that
for any i ∈ {1, 2, . . . , K}, if all players except player i reveal
their private information without distortion, the best response
of player i is also to report the true private information.
Without loss of generality, we assume player 2 through player
K report true values ĝi = g̃i, i = 2, 3, . . . , K .

Then, the expected overall payoff of player 1 is the expected
data throughput plus the transfer. The expectation is taken
over all realizations of {g2, g3, . . . , gK} throughout the proof.
When claiming ĝ1, player 1 gets the expected overall payoff

rt
1(ĝ1)

�
= E [R1(g̃1, d1(ĝ1, g2, . . . , gK)] + t1(ĝ1, ĝ2, . . . , ĝK) =

E

[
R1(g̃1, d1(ĝ1, g2, . . . , gK)+

K∑
j=2

Rj(gj , d1(ĝ1, g2, . . . , gK))

]

− 1

K − 1

K∑
j=2

Φj(ĝj).

(28)

From analysis of incentive compatibility, player 1 will claim
a distorted value ĝ1 instead of g̃1 if and only if reporting
ĝ1 results in a higher payoff, i.e., rt

1(g̃1) < rt
1(ĝ1), or

equivalently,

E

[
R1(g̃1, d1(g̃1, g2, . . . , gK)+

K∑
j=2

Rj(gj , d1(g̃1, g2, . . . , gK))

]
<

E

[
R1(g̃1, d1(ĝ1, g2, . . . , gK)+

K∑
j=2

Rj(gj , d1(ĝ1, g2, . . . , gK))

]
.

(29)

Note that the MTT rule maximizes the total through-
put, that is, for any realization of {g2, g3, . . . , gK},∑K

i=1 Ri(g̃i, d1(g̃1, g̃2, . . . , g̃K)) >
∑K

i=1 Ri(g̃i, d
o) for any

other possible allocation strategy do. After taking the expec-
tation, we have

E

[
R1(g̃1, d(g̃1, g2, . . . , gK)+

K∑
j=2

Rj(gj , d(g̃1, g2, . . . , gK))

]
>

E

[
R1(g̃1, d

o) +

K∑
j=2

Rj(gj , d
o)

]
for any do,

(30)

which contradicts (29). Therefore, player 1 is self-enforced to
report the true value, i.e., ĝ1 = g̃1. Hence, in the equilibrium,
all players will reveal their true private information.

The proposition proves that by adopting the proposed
mechanism-based strategy with transfer function defined in
(26), every player gets the incentive to reveal true private infor-
mation to others. For the homogenous case where PM

i = P ,
hii ∼ CN (0, 1) for all i, the transfer function can be further
simplified into the following form by order statistics

ti(ĝ1, ĝ2, . . . , ĝK) =
K∑

j=1

∫ ĝj/P

ĝi/P

log2

(
1 +

Pg

N0

)
exp(−g) (1 − exp(−g))K−2 dg.

(31)

Moreover, with the proposed transfer functions, all players’
payment/income adds up to 0 at any time slot:

K∑
i=1

ti(ĝ1, ĝ2, . . . , ĝK) =

K∑
i=1

⎛
⎝Φi(ĝi) − 1

K − 1

K∑
j=1,j �=i

Φj(ĝj)

⎞
⎠

=
K∑

i=1

Φi(ĝi) −
K∑

j=1

Φj(ĝj) = 0.

(32)

It means that the monetary transfer is exchanged only within
the community of cooperative players without either surplus
or deficit at any time. This property is very suitable for the
open spectrum sharing scenario. Vickrey-Clark-Groves (VCG)
mechanism [29], another well-known mechanism, can also
enforce truth-telling, but it cannot keep the budget balanced.
If the VCG mechanism is used, at each slot some players
will have to pay a third party outside the community (e.g., a
spectrum manager), which goes against the intention of the
unlicensed band. Furthermore, paying for the band may make
players less willing to access the spectrum. Despite that the
VCG mechanism is a good choice for auctions in licensed
spectrum, for the unlicensed band, as our goal is increasing
spectrum efficiency and enforcing truth-telling rather than
making money out of the spectrum resources, the proposed
mechanism is more appropriate.

B. Statistics-based strategy

For the APF rule, every player reports the normalized
channel gain, and the player with the highest reported value
will get access to the spectrum. Since the normalized gains are
all exponentially distributed with mean 1, if the true values are
reported, the symmetry will result in an equal share of the time
slots in the long run, i.e., each player will have 1/K fractional
access to the spectrum.

If player i occupies the spectrum more than (1/K + ε) of
the total time, where ε is a pre-determined threshold, it is
highly possible that he/she may have cheated. Consequently,
the selfish players, in order not to be caught as a cheater,
can only access up to (1/K + ε) of all the time slots even
if they distort their private information. Thus, the statistics-
based cheat-proof strategy for the APF spectrum sharing rule
can be designed as follows. Everyone keeps a record of the
spectral usage in the past. If any player is found to overuse
the spectrum, i.e., transmitting for more than (1/K + ε) of
the entire time, that player will be marked as a cheater and
get punished. In this way, the profit of cheating, defined as
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the ratio of the extra usage over the normal usage, is greatly
limited.

Proposition 6: The profit of cheating is bounded when the
statistics-based strategy is employed; furthermore, the profit
approaches 0 as n → ∞.

Proof: The worst case is that the cheater gets exactly
(1/K + ε) portion of resources without being caught. The
profit of cheating is at most ε

1/K = Kε, which is bounded.
Moreover, the threshold ε can shrink with time; to make

it explicit, we use ε[n] to denote the threshold at slot n. At
one time slot, the event that a particular player accesses the
spectrum is a Bernoulli distributed random variable with mean
1/K . Then, the n-slot averaged access rate of a player is
the average of n i.i.d. Bernoulli random variables, since the
channel fading is independent from slot to slot. According
to the central limit theorem [23], the average access rate
converges in distribution to a Gaussian random variable with
mean 1/K , whose variance decays with rate 1

n . To keep the
same false alarm rate, ε[n] can be chosen to decrease with
rate 1√

n
. Then, the upper bound of the cheating profit Kε[n]

will decay to 0 as n → ∞.
Therefore, we can conclude from the proposition that the

benefit to the cheater, or equivalently speaking, the harm to
the others, is quite limited. As a result, this statistics-based
strategy is cheat-proof.

VI. SIMULATION RESULTS

In this section, we conducted numerical simulations to
evaluate the proposed spectrum sharing game with cheat-proof
strategies.

We first look into the simplest case with two players
(K = 2) to get some insight. We assume the two players are
homogeneous with PM

1 = PM
2 = P , {h11, h22} ∼ CN (0, 1),

and {h12, h21} ∼ CN (0, γ), where γ = E[|h12|2]/E[|h11|2]
reflects the relative strength of interference over the desired
signal powers, and we call it the interference level. The
prerequisite for the players to join the game is that each
individual can obtain more profit by cooperation (rC

i > rS
i );

however, cooperation is unnecessary in the extreme case when
there is no mutual interference (γ = 0). Therefore, we want to
know under what interference level γ the proposed cooperation
is profitable. Fig. 3 shows the cooperation payoff rC

i and non-
cooperation payoff rS

i versus γ when the averaged SNR =
P/N0 = 15dB. Since the two rules are equivalent in the
homogeneous case, only the MTT rule is demonstrated. Under
cooperative spectrum sharing, since only one player gets the
transmission opportunity in each time slot, the expected payoff
is independent of the strength of interference, and thus is
a horizontal line in the figure. The non-cooperation payoff
drops significantly as interference strength increases. From the
figure, we can see that the payoff of cooperation is larger than
that of non-cooperative for a wide range of the interference
level (γ > 0.15). Therefore, the proposed cooperation is
profitable for medium to high interference environment, which
is typical for an urban area with high user density.

In Fig. 4, we illustrate the idea of the punishment-based
repeated game. Assume player 1 deviates from cooperation at
slot 150, and the duration of the punishment stage is T = 150.
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Fig. 3. Comparison of payoffs when the players share the spectrum either
cooperatively or non-cooperatively.
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Fig. 4. Illustration of the punishment-based repeated game.

According to the “punish-and-forgive” strategy, the game will
stay in the punishment stage from time slot 151 to 300. The
figure shows an averaged result over 100 independent runs.
We can see that although the player gets a high payoff at time
slot 150 by deviation, the temporary profit will be negated in
the punishment stage. Hence, considering the consequence of
deviation, players have no incentive to deviate.

The effect of δ is demonstrated in Fig. 5. We assume all
players have the same tendency of deviation, i.e., τi = τ, ∀i

where τi
�
= RD

i /(rC
i − rS

i ). We evaluate the effect of δ
when τ equals 5, 10, and 20, respectively. Given a fixed
δ, any punishment duration T above the curve can deter
the deviation, and the duration should be longer for larger
τ as players have greater incentive to deviate. In addition,
when δ is close to 1, the minimal duration goes to τ + 1
as in (11), and δ has to be larger than δ̄ = τ/(1 + τ) to
guarantee that punishment can prevent players from deviating
(δ > δ̄ is necessary to make (10) valid). In other words, in
situations where players are impatient (δ is far away from 1)
and tendency to deviate is strong, it is impossible to maintain
cooperation using the “punishment-and-forgive” strategy with
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Fig. 6. Effect of the length of detection on the discounted utility.

repeated-game modeling.
Now, we take imperfect detection into consideration. Fig. 6

shows how a player’s discount utility ǔ(α) is affected by α
when an energy detector with a fixed detection threshold is
employed. We can see that when the detection time is short,
the utility is quite low due to the high false alarm rate. On the
other hand, when the detection time is too long, a significant
portion of the transmission opportunity is wasted. Therefore,
α should be carefully designed to achieve the optimal tradeoff
that maximizes the utility.

Next, we show the payoffs of proposed cooperation rules
in a heterogeneous environment. By heterogeneity, we mean
that different players may differ in power constraints, averaged
direct-channel gains {hii, i = 1, 2, . . . , K}, averaged cross-
channel gains {hij , i �= j}, or combination of them. Here
we only illustrate the results when the power constraints are
different, since other types of asymmetry have similar results.
In the simulation, we fix the power constraint of player 1,
and increase PM

2 , the power constraint of player 2. The
payoffs with the MTT and APF rules are demonstrated in
Fig. 7, where ‘1’ and ‘2’ refer to the payoffs of player 1 and
player 2, respectively. As benchmarks, the payoffs without
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Fig. 7. The payoffs under a heterogeneous setting with different cooperation
rules.
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Fig. 8. The cooperation gain in a K-player spectrum sharing game.

cooperation and payoffs using the max-min fairness criterion
(another resource allocation criterion sacrificing efficiency for
absolute fairness, see [30]) are provided, denoted by “NOC”
and “MMF”, respectively. Since player 2 has more power to
transmit data, he/she can be seen as a strong player in this
heterogeneous environment. As seen from the figure, both the
MTT and APF rules outperform the non-cooperation case,
which means players have the incentive to cooperate no matter
which rule is used. Furthermore, the MTT rule favors the
strong player in order to maximize the system efficiency,
and the APF rule achieves a tradeoff between efficiency
and fairness. The MMF curves show that the strong user is
inhibited in order to reach the absolute fairness, which might
conflict with selfish users’ interest.

We also conduct simulations for spectrum sharing with more
than two users. In Fig. 8, the cooperation gain, characterized
by the ratio of rC

i /rS
i , is plotted versus the number of the

players K . We assume a homogeneous environment with a
fixed interference level γ = 1. Since the allocation rules can
reap multiuser diversity gains, the cooperation gain increases
as more players are involved in the sharing game.
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Fig. 9. The expected overall payoffs versus different claimed values.

Finally, we examine the proposed mechanism-design-based
cheat-proof strategy. We assume a 3-user spectrum sharing
game with the MTT rule. At one specific time slot, for
example, the true private values are g̃1 = 0.4, g̃2 = 0.8, and
g̃3 = 1.1. In Fig. 9, the expected overall payoffs (throughput
plus transfer) versus the claimed values are shown for each
player, given the other two are honest. From the figure, we
see that the payoff is maximized only if the player honestly
claims his/her true information. Therefore, players are self-
enforced to tell the truth with the proposed mechanism.

VII. CONCLUSIONS

We have proposed a novel spectrum sharing scheme with
cheat-proof strategies to improve the efficiency of open spec-
trum sharing. The spectrum sharing problem is modeled as
a repeated game where any deviation from cooperation will
trigger the punishment. We propose two cooperation rules with
efficiency and fairness considered, and optimize the detection
time to alleviate the impact due to imperfect detection of the
selfish behavior. Moreover, two cheat-proof strategies based
on mechanism design and properties of channel statistics are
proposed to enforce that selfish users report their true channel
information. Simulation results show that the proposed scheme
has efficiently improved the spectrum usage by alleviating the
mutual interference.
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