Scope of ENEE631

- First graduate course on image/video processing
- **Prerequisites:** ENEE620 and 624, or by permission
 - Not assume you have much exposure on image processing at undergraduate level
 - Random processes and DSP are required background
- **Emphasis on fundamental concepts**
 - Provide theoretical foundations on multi-dimensional signal processing built upon pre-requisites
 - Coupled with assignments and projects for hands-on experience and reinforcement of the concepts
 - Follow-up courses
 - image analysis, computer vision, pattern recognition
 - multimedia communications and security

Textbooks

- **Primary**

- **References**

- **Other references**
 - Will be announced in lectures
A picture is worth 1000 words.

A video is worth 1000 sentences?

- Rich info. from visual data
- Examples of images around us
 - natural photographic images; artistic and engineering drawings
 - scientific images (satellite, medical, etc.)
- "Motion pictures" => video
 - movie, TV program; family video; surveillance and highway/ferry camera

Why Do We Process Images?

- Enhancement and restoration
 - remove artifacts and scratches from an old photo/movie
 - improve contrast and correct blurred images
- Transmission and storage
 - images from oversea via Internet, or from a remote planet
- Information analysis and automated recognition
 - providing "human vision" to machines
- Security and rights protection
 - encryption and watermarking

Why Digital?

- "Exactness"
 - Perfect reproduction without degradation
 - Perfect duplication of processing result
- Convenient & powerful computer-aided processing
 - Can perform rather sophisticated processing through hardware or software
 - Even kindergartners can do it!
- Easy storage and transmission
 - 1 CD can store hundreds of family photos!
 - Paperless transmission of high quality photos through network within seconds

List of Image and Video Processing Examples

- Compression
- Manipulation and Restoration
 - Restoration of blurred and damaged images
 - Noise removal and reduction
 - Morphing
- Applications
 - Visual mosaicing and virtual views
 - Face detection
 - Visible and invisible watermarking
 - Error concealment and resilience in video transmission
Compression

- Color image of 600x800 pixels
 - Without compression
 - 600*800 * 24 bits/pixel
 - = 11.52K bits = 1.44M bytes
 - After JPEG compression (popularly used on web)
 - only 89K bytes
 - compression ratio ~ 16:1

- Movie
 - 720x480 per frame, 30 frames/sec, 24 bits/pixel
 - Raw video ~ 243M bits/sec
 - DVD ~ about 5M bits/sec
 - Compression ratio ~ 48:1

Denoising

From X.Li http://www.ee.princeton.edu/~lixin/denoising.htm

Deblurring

Blurred & noisy image
Restored image

Morphing

Princeton CS426 face morphing examples
Visual Mosaicing
- Stitch photos together without thread or scotch tape

Face Detection
- Face detection in '98 @ CMU CS, http://www.cs.cmu.edu/afs/cs/Web/People/har/faces.html

Visible Digital Watermarks
- From IBM Watson web page "Vatican Digital Library"

Invisible Watermark
- 1st & 30th Mpeg4.5Mbps frame of original, marked, and their luminance difference human visual model for imperceptibility: protect smooth areas and sharp edges
Data Hiding for Annotating Binary Line Drawings

- original
- marked w/ "01/01/2000"
- pixel-wise difference

Error Concealment

- (a) original lenna image
- (b) corrupted lenna image
- (c) concealed lenna image

25% blocks in a checkerboard pattern are corrupted
Corrupted blocks are concealed via edge-directed interpolation

Examples were generated using the source codes provided by W. Zeng.

What is An Image?

- **Grayscale image**
 - A grayscale image is a function $I(x,y)$ of the two spatial coordinates of the image plane.
 - $I(x,y)$ is the intensity of the image at the point (x,y) on the image plane.
 - $I(x,y)$ takes non-negative values
 - Assume the image is bounded by a rectangle $[a,b] \times [c,d]$.

- **Color image**
 - Can be represented by three functions, $R(x,y)$ for red, $G(x,y)$ for green, and $B(x,y)$ for blue.

Sampling and Quantization

- **Computer handles “digital” data.**
- **Sampling**
 - Sample the value of the image at the nodes of a regular grid on the image plane.
 - A pixel (picture element) at (i,j) is the image intensity value at grid point indexed by the integer coordinate (i,j).
- **Quantization**
 - Is a process of transforming a real valued sampled image to one taking only a finite number of distinct values.
 - Each sampled value in a 256-level grayscale image is represented by 8 bits.
Examples of Sampling

- 256x256
- 64x64
- 16x16

Examples of Quantization

- 8 bits / pixel
- 4 bits / pixel
- 2 bits / pixel