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Abstract

Various spectrum management schemes have been proposed in recent years to improve the spectrum

utilization in cognitive radio networks. However, few of them have considered the existence of cognitive

attackers who can adapt their attacking strategy to the time-varying spectrum environment and the secondary

users’ strategy. In this paper, we investigate the security mechanism when secondary users are facing the

jamming attack, and propose a stochastic game framework for anti-jamming defense. At each stage of the

game, secondary users observe the spectrum availability, the channel quality, and the attackers’ strategy from

the status of jammed channels. According to this observation, they will decide how many channels they

should reserve for transmitting control and data messages and how to switch between the different channels.

Using the minimax-Q learning, secondary users can gradually learn the optimal policy, which maximizes the

expected sum of discounted payoffs defined as the spectrum-efficient throughput. The proposed stationary

policy in the anti-jamming game is shown to achieve much better performance than the policy obtained

from myopic learning, which only maximizes each stage’s payoff, and a random defense strategy, since it

successfully accommodates the environment dynamics and the strategic behavior of the cognitive attackers.

Index Terms

Security mechanism, spectrum management, cognitive radio networks, game theory, reinforcement

learning.
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I. INTRODUCTION

In recent years, cognitive radio technology [1] [2] has been proposed as a promising commu-

nication paradigm to solve the conflict between the limited spectrum resources and the increasing

demand for wireless services. By exploiting the spectrum in an opportunistic fashion, cognitive radio

enables secondary users to sense which portion of the spectrum is available, select the best available

channel, coordinate the spectrum access with other users, and vacate the channel when a primary

user reclaims the spectrum usage right. In order to utilize the spectrum resources efficiently, various

spectrum management approaches have been proposed in the literature, such as the pricing-based

spectrum sharing approaches [3]–[10], where primary users lease the available spectrum bands to

secondary users, and the opportunistic spectrum sharing approaches based on sensing and stochastic

modeling about the primary user’s access [11]–[13].

Although these proposed approaches have been shown to be able to improve the spectrum

utilization or bring monetary gains for the primary users, most of them are based on the assumption

that the users only aim at maximizing the spectrum utilization, either in a cooperative way where

all users are coordinated by the same network controller and serve a common goal, or in a selfish

manner where the autonomous secondary users want to maximize their own benefit. However, such

an assumption does not hold when the secondary users are in a hostile environment, where there

exist malicious attackers whose objective is to cause damage to the legitimate users and prevent the

spectrum from being utilized efficiently. Therefore, how to secure spectrum sharing is of critical

importance to the wide deployment of the cognitive radio technology.

Malicious attackers can launch various types of attacks in different layers of a cognitive radio

network. In [14], the authors studied the primary user emulation attack, where the cognitive

attackers mimic the primary signal to prevent secondary users from accessing the licensed spectrum.

Localization-based defense mechanism was proposed, which verifies the source of the detected sig-

nals by observing the signal characteristics and estimating its location. The work in [15] investigated

the spectrum sensing data falsification attack, and proposed a weighted sequential probability ratio

test to alleviate the performance degradation due to sensing error. Other possible security issues such

as denial of service attacks in cognitive radio networks are discussed in [16] and [17]. However,

most of these works [16][17] only provide qualitative analysis about the countermeasures, and have

not considered the real dynamics in the spectrum environment and the cognitive attackers’ capability

to adjust their attacking strategy.
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In this work, we focus on the jamming attack in a cognitive radio network and propose a stochastic

game framework for anti-jamming defense design, which can accommodate the dynamic spectrum

opportunity, channel quality, and both the secondary users and attackers’ strategy changes. The

jamming attack has been extensively studied in wireless networking, and existing anti-jamming

solutions include physical layer defenses, such as directional antennas [19] and spread spectrum

[20], link-layer defenses such as channel hopping [22], [23], [24], [25], and network-layer defenses,

such as spatial retreats [26]. However, they are not directly applicable to cognitive radio networks,

since the spectrum availability keeps changing with the primary users returning/vacating the licensed

bands. For instance, the work in [25] proposed to use error-correcting codes (n,m) to ensure reliable

data communications with a high throughput. However, this approach requires that at each time

there are at least n channels available, which may not be satisfied if many licensed bands are

occupied by primary users.

Moreover, most of the works assume that the attackers adopt a fixed strategy that will not

change with time. However, if the attackers are also equipped with cognitive radio technology, it is

highly likely that they will adapt their attacking strategy according to the environment dynamics as

well as the secondary users’ strategy. Therefore, in our work, we model the strategic and dynamic

competition between the secondary users and the cognitive attackers as a zero-sum stochastic game.

In order to ensure reliable transmission, we propose to reserve multiple channels for transmitting

control messages, and the control channels should be switched with the data channels from time to

time, according to the attackers’ strategy. We define the spectrum availability, the channel quality,

and the observation about the attackers’ action as the state of the game. The secondary users’ action

is defined as how many control or data channels they should reserve and how to switch between

the control and data channels, and their objective is to maximize the spectrum-efficient throughput,

defined as the ratio between the expected achievable throughput over the total number of active

channels used for transmitting control and data messages.

Using the minimax-Q learning algorithm, the secondary users can obtain the optimal policy,

with a proved convergence. Simulation results show that when the channel quality is not good,

the secondary users should reserve a lot data channels and a few control channels to improve the

throughput. As the channel quality becomes better, they should reserve more control channels to

ensure communication reliability. When the channel quality further increases, the secondary users

should be more conservative by reserving less data channels to improve the spectrum-efficient
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throughput. At the states when some control or data channels are observed to be jammed, the

secondary users should adopt a mixed strategy to avoid being severely jammed next time. When

there are more than one licensed band available, the attackers’ decision making becomes more

difficult, and the secondary users can take more aggressive action by having more data channels.

It is also shown that the secondary users can achieve a higher payoff using the stationary policy

learned from the minimax-Q learning than using myopic learning and a random strategy.

The remaining of the paper is organized as follows. In Section II, we introduce the system model

about the secondary user network and the anti-jamming defense. In Section III, we formulate the

anti-jamming defense as a stochastic game by defining the states, actions, objective functions, and

the state transition rules. In Section IV, we obtain the optimal policy of the secondary user network

using the minimax-Q learning algorithm. In Section V we present the simulation results, followed

by conclusions in Section VI.

II. SYSTEM MODEL

In this section, we present the model assumptions about the secondary user network and the

anti-jamming defense against the malicious attackers.

A. Secondary User Network

In this paper, we consider a dynamic spectrum access network where multiple secondary users

equipped with cognitive radio are allowed to access temporarily-unused licensed spectrum channels

that belong to multiple primary users. There is a secondary base station in the network, which

coordinates the spectrum usage of all secondary users. In order to avoid conflict or harmful

interference to the primary users, the secondary users need to listen to the spectrum before every

attempt of transmission. We assume the secondary network is a time-slotted system, and at the

beginning of each time slot, secondary users need to reserve a certain time to detect the presence

of a primary user. Various detection techniques are available, such as energy detection, or feature

detection if the secondary users know some prior information about the primary users’ signal.

In cooperative spectrum sharing such as a spectrum auction, secondary users can avoid harmful

interference by listening to the primary users’ announcement about whether they would share the

licensed channels with the secondary users. To simplify analysis, we assume perfect sensing or

cooperative spectrum sharing in this work. Therefore, the secondary user network can take every
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opportunity to utilize the currently unused licensed spectrum, and vacate the spectrum whenever a

primary user reclaims the spectrum rights.

Due to the primary users’ activity and channel variations, the spectrum availability and quality

keep changing. In order to coordinate the spectrum usage and achieve efficient spectrum utilization,

necessary control messages need to be exchanged between the secondary base station and the

secondary users through dedicated control channels1. Control channels serve as a medium that

can support high-level network functionality, such as access control, channel assignment, spectrum

handoff, etc. If the control messages are not correctly received by the secondary users or base

station, certain network functions will get impaired.

B. Anti-Jamming Defense in Cognitive Radio Networks

Radio jamming is a Denial of Service (DoS) attack which targets at disrupting communications

at the physical and link layers of a wireless network. By keeping the wireless spectrum busy, e.g.,

constantly injecting packets to a shared spectrum [22], a jamming attacker can prevent legitimate

users from accessing an open spectrum band. Another type of jamming is to inject high interference

power around the vicinity of a victim [18] [26], so that the signal to noise ratio (SNR) deteriorates

heavily and no data can be received correctly.

In a cognitive radio network, malicious attackers can launch jamming attack to prevent efficient

utilization of the spectrum opportunities. In this paper, we assume that the characteristics of the

transmitted signal by the primary users and the secondary users are distinguishable, and the attackers

also listen to the licensed band when the secondary users are sensing the spectrum. The attackers

will jam the secondary users’ transmission, while will not jam the licensed bands when the primary

users are active, either because there may be a very heavy penalty on the attackers if their identities

are known by the primary users, or because the attackers cannot get close to the primary users.

Moreover, due to the limitation of the number of antennas and/or the total power, we assume that

the attackers can jam at most N̄ channels in each time slot. Then, the objective of the attackers is

to cause the most damage to the secondary user network with the limited jamming capability.

Given the limited jamming capability, the attackers can adopt an attacking strategy that targets at

as many data channels as possible to reduce the gain of the secondary user network by transmitting

1Many wireless networks employ control channels for sending system control information [35], e.g., the GSM cellular

communication system has multiple control channels, which are located at very specific time slots and physical frequency band.
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data. On the other hand, if the number of control channels is less than N̄ , while the number of data

channels is greater than N̄ , the attackers can try to target at the control channels to make the attack

even more powerful. If the secondary user network adopts a fixed channel assignment scheme for

transmitting data and control messages, a cognitive attacker can capture such a pattern2, distinguish

between the data channels and control channels, and target at only the data or control channels and

cause the highest damage.

Therefore, secondary users need to perform channel hopping/switching to alleviate the potential

damage due to a fixed channel assignment schedule. As shown in Figure 1, the channels that

are used for transmitting data/control messages in this time slot may no longer be data/control

channels in the next time slot. By introducing randomness in their channel assignment, secondary

users’ access pattern becomes more unpredictable. Then, the attackers also have to strategically

change the channels they will attack with time. Therefore, channel hopping is more resistant to the

jamming attack than a fixed channel assignment.

When designing the channel hopping mechanism in a cognitive radio network, the secondary

users need to take the following facts into consideration.

• There is a tradeoff in choosing a proper number of control channels. The secondary network

functionality relies heavily upon the correct reception of control messages. Thus, it is more

reliable to transmit duplicate control messages in multiple channels (i.e., control channels).

However, if the secondary user network reserves too many control channels, the number of

channels where data messages are transmitted (i.e., data channels) will be small, and the

achievable gain through utilizing the licensed spectrum will be unnecessarily low. Therefore,

a good selection should be able to balance the risk of having no control messages successfully

received and the gain of transmitting data messages. To make the defense mechanism more

general, we assume that the secondary user network can choose to transmit nothing in some

channels even when the licensed band is available. This is because when the secondary base

station believes it has reserved enough data or control channels under very severe jamming

attack, allocating more channels for transmitting messages can only result in a waste the energy,

and it will be better the leave some channels as idle, if the energy consumption is a concern

2Since control messages may have distinguishable features from data messages, for instance, different lengths, headers, and

acknowledgement, the attackers can determine whether the jammed channels are control or data channels after jamming for a

number of time slots. Similar assumptions can be found in [36].
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of the secondary user network.

• The channel hopping mechanism must be adaptive to the attackers’ strategy. This is because

the attackers may also be equipped with cognitive radio technology and adjust their strategies

based on the observation about the spectrum environment dynamics and the secondary users’

strategy. Thus, the secondary users cannot pre-assume that the attackers will adopt a fixed

attack strategy. Instead, they need to build a stochastic model that captures the dynamic strategy

adjustment of the attackers, as well as the spectrum environment variations.

According to the above-mentioned assumptions about the system model and the jamming attack,

we know that the secondary users aim at maximizing the spectrum utilization with carefully-designed

channel switching schedules, while the malicious attackers want to decrease the spectrum utilization

by strategic jamming. Therefore, they have opposite objectives and their dynamic interactions can

be well modeled as a noncooperative (zero-sum) game3. As we assume that the spectrum access of

all the secondary users is coordinated by the secondary base station, and the malicious users work

together to cause the most damage to the secondary users, we can view all the secondary users

in the network as one player, and all the attackers as another player. Moreover, considering that

the spectrum opportunity, channel quality, and both the secondary users and malicious attackers’

strategies are changing with time, the noncooperative game should be considered in a stochastic

setting, i.e., the dynamic anti-jamming defense in the secondary user network should be formulated

as a stochastic game.

III. STOCHASTIC ANTI-JAMMING GAME FORMULATION

Before we go into details of the stochastic anti-jamming game formulation, let us first introduce

the stochastic game to get a general idea. A stochastic game [28] is an extension of Markov

Decision Process (MDP) [29] by considering the interactive competition among different agents.

In a stochastic game G, there is a set of states, denoted by S , and a collection of action sets,

A1, · · · ,Ak, one for each player in the game. The game is played in a sequence of stages. At

the beginning of each stage the game is in some state. After the players select and execute their

3Note that if the individual cost of the attacker, e.g. cost due to energy consumption of jamming, is a concern of the attackers,

the payoff of the attackers will not be the negative of the secondary users’ payoff, and the game is better modeled as a general-sum

game. However, to simplify analysis, in this paper we only discuss the zero-sum stochastic game and case of general-sum games

can be studied in a similar way.
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actions, the game then moves to a new random state with transition probability determined by the

current state and one action from each player: T : S × A1 × · · · × Ak 7→ PD(S). Meanwhile, at

each stage each player receives a payoff Ri : S ×A1 × · · · × Ak 7→ R, which also depends on the

current state and the chosen actions. The game is played continually for a number of stages, and

each player attempts to maximize his/her expected sum of discounted payoffs, E{∑∞
j=0 γjri,t+j},

where ri,t+j is the reward received j steps into the future by player i and γ is the discount factor.

After introducing the concepts of a stochastic game, we next formulate the anti-jamming game

by defining each component of the game.

A. States and Actions

We consider a spectrum pooling system, where the secondary user network can use the temporar-

ily unused spectrum bands that belong to L primary users. As the bandwidth of different licensed

bands may be different, we assume that each licensed band is divided into a set of adjacent channels

with the same bandwidth. Then, there are Nl channels in primary user l’s band, and we assume

all of them will be occupied/released when primary user l reclaims/vacates the band. Then, we

can denote primary user l’s states in the l-th band at time t as P t
l , whose value can be either

P t
l = 1, meaning primary user l is active at time t, or P t

l = 0, meaning primary user l will

not use the licensed band at time t and the secondary users can access the channels in the l-th

band. According to some empirical studies on the primary users’ access pattern [27], the states

P t
l can be modeled by a two-state Markov chain, where the transition probabilities are denoted by

p1→1
l = p(P t+1

l = 1|P t
l = 1) and p0→1

l = p(P t+1
l = 1|P t

l = 0).

The secondary user network will achieve a certain gain by utilizing the spectrum opportunity

on the licensed bands. The gain can be defined as a function of the data throughput, packet loss,

delay, or other proper Quality of Service (QoS) measure, and is often an increasing function of

the channel quality. Due to the channel variations on each licensed band, the channel quality may

change from one time slot to another, so the gain of utilizing a licensed band also changes over

time. We assume that the gain of each channel within the same licensed band l is identical at any

time t, and it can take any value from a set of discrete values, i.e., gt
l ∈ {q1, q2, · · · , qn}. Since the

channel quality (in terms of SNR) is often modeled as a finite-state Markov chain (FSMC) [21],

the dynamics of the l-th licensed band’s gain gt
l can also be expressed by an FSMC. Note that the

achievable gain of utilizing the licensed bands also depends on the primary users’ status, i.e., when
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the primary user is active in the l-th band (P t
l = 1), the secondary users are not allowed to access

band l, and thus gt
l = 0. So the state of the FSMC should be able to capture the joint dynamics of

both the primary users’ access and the channel quality, which can be denoted by (P t
l , g

t
l ).

The transition probability of the FSMC with states (P t
l , g

t
l ) can be derived as follows. When the

l-th licensed band is not available for two consecutive time slots, the transition depends only on

the primary users’ access pattern, so we have

p(P t+1
l = 1, gt+1

l = 0|P t
l = 1, gt

l = 0) = p1→1
l . (1)

When the l-th band becomes available with gain qn at time t + 1, we have

p(P t+1
l = 0, gt+1

l = qn|P t
l = 1, gt

l = 0) = (1− p1→1
l )p0→n

gl
, (2)

where p0→n
gl

denotes the probability that the gain of band l is qn at time t + 1, given that P t
l = 1

and P t+1
l = 0. When the l-th band is available for two consecutive time slots, we have the state

transition probability as

p(P t+1
l = 0, gt+1

l = qn|P t
l = 0, gt

l = qm) = (1− p0→1
l )pm→n

gl
, (3)

where pm→n
gl

is the probability that the gain transits from qm at time t to qn at time t + 1. Finally,

when the l-th band turns unavailable from time t to time t + 1, the transition probability is

p(P t+1
l = 1, gt+1

l = 0|P t
l = 0, gt

l = qm) = p0→1
l , (4)

since the transition does not depend on the the gain gt
l at time t.

In the above, we have discussed the dynamics of primary users’ returning/vocating the licensed

bands and the gains of utilizing the licensed spectrum. Clearly, these dynamics will affect the

secondary users’ decisions about how to allocate the channels for transmitting control and data

messages. For instance, in order to obtain higher utilization of the spectrum opportunities, the

secondary users tend to allocate more channels with higher gains as data channels and those with

lower gains as control channels. However, their channel allocation decisions should also depend

on the observations about the malicious attackers’ strategies, which can be conjectured from the

channels that get jammed by the attackers. Thus, the secondary users should maintain a record

about which channels have been jammed by the attackers and what type of messages have been

transmitted in the jammed channels. Since the channels within the same licensed band are assumed

to have the same gain, what matters to the secondary users is only the number and the type of
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the jammed channels. Based on these assumptions, the observations of the secondary user network

are denoted by {J t
l,C , J t

l,D}, where J t
l,C and J t

l,D denotes the number of control and data channels

that get jammed in the l-th band observed at time slot t, and l ∈ {1, 2, · · · , L}. Such observation

can be obtained when the secondary users do not receive a confirmation about message receipt

from the receiver. The secondary users cannot tell whether an idle channel gets jammed or not,

since no messages are transmitted in those channels. Thus, the number of idle channels that get

jammed is not an observation of the secondary users, and will not be considered in the state of the

stochastic game. In summary, the state of the stochastic anti-jamming game at time t is defined by

st = {st
1, s

t
2, · · · , st

L}, where st
l = (P t

l , g
t
l , J

t
l,C , J t

l,D) denotes the state associated with the l-th band.

After observing the state at each stage, both the secondary users and the attackers will choose

their actions for the current time slot. The secondary users may no longer choose the previously

jammed channels as control or data channels if they believe that the attackers will stay in the

jammed channels until they detect no activity of the secondary users. On the other hand, if the

attackers believe that the secondary users will hop away from the jammed channels, they will

choose the previously un-attacked channels to jam; then for the secondary users, staying still in

the previously jammed channels may be a better choice. When facing such uncertainty about each

other’s strategy, both the secondary users and the attackers should adopt a randomized strategy.

The secondary users will still transmit control or data messages in part of the previously jammed

channels in case that the attackers are more likely to jam the previously un-attacked channels, and

start transmitting in part of the previously un-attacked channels in case that the attackers are more

likely to keep jamming the previously jammed channels for a while. Similarly, the attackers will

keep jamming some of the previously jammed channels and start to jam the channels that were not

jammed in the previous time slot.

In addition, as discussed in Section II, the secondary users may need to perform channel switching

to make their channel access pattern more unpredictable to the attackers and alleviate the potential

damage due to jamming. Thus, at every time the secondary users can switch a control channel

to a data or an idle channel, and vice versa. If so, when there are Nl channels in each licensed

band l, the secondary users will have 3Nl different actions to choose from on the l-th band and
∏L

l=1 3Nl actions in total. This will complicate the decision making of the secondary users. To

have the decision making computable in a reasonable time, we formulate the action set for both

players as follows. Note that more complicated action modeling will only affect the performance,
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while not affecting the stochastic anti-jamming game framework.

Mathematically, the actions of the secondary users are defined as at = {at
1, a

t
2, · · · , at

L}, with at
l =

(at
l,C1

, at
l,D1

, at
l,C2

, at
l,D2

), where action at
l,C1

(or at
l,D1

) means that the secondary network will transmit

control (or data) messages in at
l,C1

(or at
l,D1

) channels uniformly selected from the previously un-

attacked channels, and action at
l,C2

(or at
l,D2

) means that the secondary network will transmit control

(or data) messages in at
l,C1

(or at
l,D1

) channels uniformly selected from the previously jammed

channels. Similarly, the actions of the attackers are defined as at
J = {at

1,J , at
2,J , · · · , at

L,J}, with

at
l,J = (at

l,J1
, at

l,J2
), where action at

l,J1
(or at

l,J2
) means that the attackers will jam at

l,J1
(or at

l,J2
)

channels uniformly selected from the previously un-attacked (or attacked) channels at current time

t. It can be seen that the above choice of actions has modeled the players’ uncertainty about each

other’s strategy on the jammed and un-jammed channels, as well as the need for channel switching.

B. State Transitions and Stage Payoff

With the state and action space defined, we next discuss the state transition rule. We assume that

the players choose their actions in each band independently, then the transition probability can be

expressed by

p(st+1|st, at, at
J) =

L∏

l=1

p(st+1
l |st

l , a
t
l , a

t
l,J). (5)

Since the dynamics of the primary users’ activity and the channel variations are supposed to

be independent of the players’ actions, the transition probability p(st+1
l |st

l , a
t
l , a

t
l,J) can be further

separated into two parts, i.e.

p(st+1
l |st

l , a
t
l , a

t
l,J) = p(J t+1

l,C , J t+1
l,D |J t

l,C , J t
l,D, at

l , a
t
l,J)× p(P t+1

l , gt+1
l |P t

l , g
t
l ), (6)

where the first term on the right hand side of (6) represents the transition probability of the number

of jammed control and data channels, and the second term represents the the transition of the

primary user status and the channel condition. As the second term has been derived in (1)-(4), we

only need to derive the first term for different cases.

Case 1: P t
l = 1. As discussed in Section II, we assume that the attackers will not jam the licensed

bands when the primary users are active; then, when the l-th band is occupied by the primary user

at time slot t, i.e., P t
l = 1, the action of the attackers will be at

l,J = (0, 0), and the state variable

J t+1
l,C and J t+1

l,D will be 0. Therefore, when P t
l = 1, we have

p(st+1
l |st

l , a
t
l , a

t
l,J) = p(P t+1

l , gt+1
l |P t

l , g
t
l ), if J t+1

l,C = 0 and J t+1
l,D = 0. (7)
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Case 2: P t
l = 0. When the l-th band is available to the secondary users, according to the

observation J t
l,C and J t

l,D at time t about the jammed channel status in the previous time slot, the

secondary network will choose an action at
l = (at

l,C1
, at

l,D1
, at

l,C2
, at

l,D2
), and the attackers choose an

action at
l,J = (at

l,J1
, at

l,J2
). As the jammed control (or data) channels at the next time slot t+1 include

those control (or data) channels that the secondary network has selected from both the previously

un-jammed and jammed channels, when deriving the transition p(J t+1
l,C , J t+1

l,D |J t
l,C , J t

l,D, at
l , a

t
l,J), we

need to consider all possible pairs of (nC1 , nC2) and (nD1 , nD2), where nC1 (or nD1) denotes the

number of jammed control (or data) channels that are previously un-jammed, nC2 (or nD2) denotes

the number of jammed control (or data) channels that are previously jammed, with nC1+nC2 = J t+1
l,C ,

and nD1 + nD2 = J t+1
l,D . Given that the secondary users uniformly choose at

l,C1
(or at

l,D1
) channels

as control (or data) channels out of the un-jammed Nl − J t
l,C − J t

l,D channels, and the attackers

uniformly jam at
l,J1

channels, the probability that nC1 control channels and nD1 data channels get

jammed at time t can be written by

p(nC1 , nD1|J t
l,C , J t

l,D, at
l , a

t
l,J) =

(
at

l,C1
nC1

)(
at

l,D1
nD1

)(Nt
l,1−at

l,C1
−at

l,D1

at
l,J1

−nC1
−nD1

)

(Nt
l,1

at
l,J1

) , (8)

where N t
l,1 = Nl − J t

l,C − J t
l,D. Similarly, the transition probability of nC2 and nD2 is expressed as

p(nC2 , nD2|J t
l,C , J t

l,D, at
l , a

t
l,J) =

(
at

l,C2
nC2

)(
at

l,D2
nD2

)(Nt
l,2−at

l,C2
−at

l,D2

at
l,J2

−nC2
−nD2

)

(Nt
l,2

at
l,J2

) , (9)

where N t
l,2 = J t

l,C + J t
l,D denotes the number of jammed channels. Then, the transition probability

of J t
l,C and J t

l,D becomes

p(J t+1
l,C , J t+1

l,D |J t
l,C , J t

l,D, at
l , a

t
l,J) =

∑

nC1
+nC2

=Jt+1
l,C

∑

nD1
+nD2

=Jt+1
l,D

p(nC1 , nD1|J t
l,C , J t

l,D, at
l , a

t
l,J)

×p(nC2 , nD2|J t
l,C , J t

l,D, at
l , a

t
l,J)

(10)

Substituting (3)(4) and (10) into (6), we can get the state transition probability.

After the secondary users and the attackers choose their actions, the secondary users will transmit

control and data messages in the selected channels, and attackers will jam their selected channels.

In order to coordinate the spectrum access and simplify operation, we assume that the same control

messages are transmitted in all the control channels, and one correct copy of control information at

time t is sufficient for coordinating the spectrum management in the next time slot t + 1. The gain
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of a channel can only be achieved when it is used for transmitting data messages and at least one

control channel is not jammed by the attackers. Considering that it costs energy for the secondary

users to transmit control and data messages and they may be energy-constrained, the objective of

the secondary users is to achieve the highest gain with a limited energy. Therefore, the stage payoff

of the secondary users can be defined as the expected gain per active channel. Another explanation

of the stage payoff is that the secondary users want to maximize the spectrum-efficient gain.

Based on these assumptions, the stage payoff can be expressed by

r(st, at, at
J) = T (st, at, at

J)× (1− pblock(st, at, at
J)), (11)

where T (st, at, at
J) denotes the expected spectrum-efficient gain when not all control channels get

jammed, and pblock(st, at, at
J) denotes the probability that all control channels in all L bands are

jammed.

As explained in Section III-A, we assume that the attackers uniformly select at
l,J1

channels from

the previous N t
l,1 un-attacked channels to jam, and select at

l,J2
channels from the previous N t

l,2

attacked channels to jam. Then, the probability that a channel will not be jammed at time t can

be represented by (1 − at
l,J1

Nt
l,1

) and (1 − at
l,J2

Nt
l,2

), respectively. Given the gain of the channels gt
l and

assuming that different data is transmitted in different channels, we have the expected gain of using

band l as [at
l,D1

(1− at
l,J1

Nt
l,1

) + at
l,D2

(1− at
l,J2

Nt
l,2

)]gt
l . Then, we can express T (st, at, at

J) as

T (st, at, at
J) =

∑L
l=1

[
at

l,D1
(1− at

l,J1

Nt
l,1

) + at
l,D2

(1− at
l,J2

Nt
l,2

)
]
gt

l

∑L
l=1(a

t
l,C1

+ at
l,D1

+ at
l,C2

+ at
l,D2

)
, (12)

where the denominator denotes the total number of control and data channels. Thus, (12) reflects

the spectrum-efficient gain.

Only when all the control channels in each licensed band l are jammed can the secondary network

be blocked. Therefore, the blocking probability pblock(st, at, at
J) can be expressed as

pblock(st, at, at
J) =

L∏

l=1

(at
l,C1

at
l,C1

)(Nt
l,1−at

l,C1

at
l,J1

−at
l,C1

)

(Nt
l,1

at
l,J1

) ×
(at

l,C2

at
l,C2

)(Nt
l,2−at

l,C2

at
l,J2

−at
l,C2

)

(Nt
l,2

at
l,J2

)

=
L∏

l=1

(Nt
l,1−at

l,C1

at
l,J1

−at
l,C1

)

(Nt
l,1

at
l,J1

) ×
(Nt

l,2−at
l,C2

at
l,J2

−at
l,C2

)

(Nt
l,2

at
l,J2

) ,

(13)
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where the first (or second) term in the product represents the probability that all the control channels

uniformly selected from the previously un-jammed (or jammed) channels in the l-th band get

jammed at time t.

Substituting (12) and (13) back into (11), we can obtain the stage payoff for the secondary users,

and the attackers’ payoff is the negative of (11).

IV. SOLVING OPTIMAL POLICIES OF THE STOCHASTIC GAME

Based on the stochastic anti-jamming game formulation in the previous section, in this section,

we discuss how to come up with the optimal strategy, i.e., the optimal defending policy of the

secondary users.

In general, the secondary users have a long sequence of data to transmit, and the energy of the

attackers can afford to jam the secondary network for a long time given that the number of the

jammed channels at each stage will not exceed N̄ . Thus, we can assume that the anti-jamming game

is played for an infinite number of stages. Moreover, the secondary users treat the payoff in different

stages differently, e.g., delayed messages usually have less value in delay-sensitive applications, and

a recent payoff should weigh more than a payoff that will be received in the faraway future. Then,

the secondary users’ objective is to derive an optimal policy that maximizes the expected sum of

discounted payoffs

max E{
∞∑

t=0

γtr(st, at, at
J)}, (14)

where γ is the discount factor of the secondary user network. A policy in the stochastic game

refers to a probability distribution over the action set at any state. Then, the policy of the secondary

network is denoted by π : S → PD(A), and the policy of the attackers can be denoted by

πJ : S → PD(AJ), where st ∈ S , at ∈ A, and at
J ∈ AJ . Given the current state st, if the

defending policy πt (or jamming policy πt
J ) at time t is independent of the states and actions in all

previous time slots, the policy π (or πJ ) is said to be Markov. If the policy is further independent

of time, i.e., πt = πt′ , given that st = st′ the policy is said to be stationary.

It is known [30] that every stochastic game has a non-empty set of optimal policies, and at least

one of them is stationary. Since the game between the secondary network and the attackers is a

zero-sum game, the equilibrium of each stage game is the unique minimax equilibrium, and thus

the optimal policy will also be unique for each player. In order to solve the optimal policy, we can

use the minimax-Q learning method [30].
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Here, the Q-function Q(st, at, at
J) at stage t is defined as the expected discounted payoff when

the secondary users take action at, the attackers take action at
J , and both of them follow their

stationary policies thereafter. Since the Q-function is essentially an estimate of the expected total

discounted payoff which evolves over time, in order to maximize the worst-case performance, at

each stage the secondary users should treat the Q(st, at, at
J) as the payoff of a matrix game, where

at ∈ A and at
J ∈ AJ . Given the payoff Q(st, at, at

J) of the game, the secondary users can find the

minimax equilibrium and update the Q-value with the value of the game [30]. Therefore, the value

of a state in the anti-jamming game becomes

V (st) = max
π(at)

min
πJ (at

J )

∑

at∈A
Q(st, at, at

J)π(at), (15)

where Q(st, at, at
J) is updated by

Q(st, at, at
J) = r(st, at, at

J) + γ
∑

st+1

p(st+1 | st, at, at
J)V (st+1). (16)

In order to avoid the complexity of estimating the state transition probability, we can modify the

value iteration and the Q-function is updated according to [31] [32]

Q(st, at, at
J) = (1− αt)Q(st, at, at

J) + αt
[
r(st, at, at

J) + γV (st+1)
]
, (17)

where αt denotes the learning rate decaying over time by αt+1 = µαt, with 0 < µ < 1, and V (st+1)

is obtained by (15). In the modified update in (17), the current value of a state V (st+1) is used as

an approximate of the true expected discounted future payoff, which will be improved during the

value iteration; and the estimate of Q(st, at, at
J) is updated by mixing the previous Q-value with a

correction from the new estimate at a learning rate αt that decays slowly over time. It is shown

that [31] the minimax-Q learning approach converges to the true Q and V values and hence the

optimal policy, as long as each action is tried in every state for infinitely many times.

Then, the minimax-Q learning for the secondary users to obtain the optimal policy is summarized

in Table I. Since no secondary user (or attacker) will transmit in (or jam) a licensed band when

the primary user is active, when the primary users’ status are different in various states, the

corresponding action spaces of the players at these states are also different. Thus, the action space

depends on the state. At the beginning of each stage t, the secondary users check whether they have

observed state st before: if not, they will add st to the observation history about every state shist, and

initialize the variables used in the learning algorithm, Q, V , and policy π(st, a). If st already exists
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TABLE I: Minimax-Q Learning for the Anti-Jamming Stochastic Game

1. At state st, t = 0, 1, · · ·
¦ if state st has not been observed previously, add st to shist,

• generate action set A(st), and AJ (st) of the attackers;

• initialize Q(st, a, aJ ) ← 1, for all a ∈ A(st), aJ ∈ AJ (st);

• initialize V (st) ← 1;

• initialize π(st, a) ← 1/|A(st)|, for all a ∈ A(st);

¦ otherwise, use previously generated A(st), AJ (st), Q(st, a, aJ ), V (st), and π(st);

2. Choose an action at at time t:

¦ with probability pexp, return an action uniformly at random;

¦ otherwise, return action at with probability π(st, a) under current state st.

3. Learn:

Assume the attackers take action at
J , after receiving reward r(st, at, at

J ) for moving

from state st to st+1 by taking action at

¦ Update Q-function Q(st, at, at
J ) according to (17);

¦ Update the optimal strategy π∗(st, a) by

π∗(st) ← arg maxπ(st) minπJ (st)

∑
a π(st, a)Q(st, a, aJ );

¦ Update V (st) ← minπJ (st)

∑
a π∗(st, a)Q(st, a, aJ );

¦ Update αt+1 ← αt ∗ µ;

¦ Go to step 1 until converge.

in the history shist, the secondary users just call the corresponding action sets and function values.

Then, the secondary users will choose an action at: with a certain probability pexp, they choose

to explore the entire action space A(st) and return an action uniformly. With probability 1− pexp,

they choose to take action at that is drawn according to the current π(st). After the attackers take

action at
J , the secondary users receive the reward, and the game transits to the next state st+1. The

secondary users update the Q and V function values, update policy π(st) at state st, and decay the

learning rate. The value iteration will continue until π(st) approaches the optimal policy, and we

will demonstrate the convergence of the minimax-Q learning in the simulation results.

Note that in order to obtain the value of a state V (st), the secondary users need to solve the

equilibrium of a matrix game, where the payoff is Q(st, a, aJ), for all a ∈ A(st), and aJ ∈ AJ(st).

Assume the attackers form the row player, whose strategy is denoted by vector πJ(st), and the

secondary users form the column player, whose strategy is denoted by vector π(st). Then, the value

of the game can be expressed by

max
π(st)

min
πJ (st)

πJ(st)T Q(st, a, aJ)π(st), (18)



16

which cannot be solved directly. If we assume the secondary users’s strategy π(st) is fixed, then

the problem in (18) becomes

min
πJ (st)

πJ(st)T Q(st, a, aJ)π(st). (19)

Since Q(st, a, aJ)π(st) is just a vector, and πJ(st) is a probability distribution, the solution of (19)

is equivalent to mini[Q(st, a, aJ)π(st)]i, i.e., finding the minimal element of Q(st, a, aJ)π(st). Then,

the problem in (18) is simplified as

max
π(st)

min
i

[Q(st, a, aJ)π(st)]i. (20)

Define z = mini [Q(st, a, aJ)π(st)]i, we have [Q(st, a, aJ)π(st)]i > mini [Q(st, a, aJ)π(st)]i = z.

Therefore, the original problem (18) becomes

max
π(st)

z

s.t. [Q(st, a, aJ)π(st)]i > z,

π(st) > 0,

1T π(st) = 1,

(21)

where π(st) > 0 means that each probability element in π(st) must be non-negative. By treating

the objective z also as a variable, (21) can be turned to the following

max
π′

0T
augπ

′

s.t. Q′π′ 6 0,

π(st) > 0,

1T
augπ

′ = 1,

(22)

where π′ = [π(st)
z

], Q′ = ([O 1]− [Q(st, a, aJ) 0]), 1T
aug = [1T 0], and 0T

aug = [0T 1]. Problem

(22) is a linear program, so the secondary users can easily obtain the value of the game z from the

optimizer π′.

V. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the secondary user network’s performance

under the jamming attack. We first demonstrate the convergence of the minimax-Q learning algo-

rithm, and analyze the strategy of the secondary users and attackers for several typical states. Then,
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we compare the achievable performance when the secondary users adopt different strategies. For

illustrative purpose, we focus on examples with only one or two licensed bands to provide more

insight; however, similar policies can be observed when there are more licensed bands available.

A. Convergence and Strategy Analysis

1) Anti-Jamming Defense in One Licensed Band: We first study the case when there is only one

licensed band available to the secondary users, i.e., L = 1. There are eight channels in the licensed

band, among which the attackers can at most choose four channels to jam at each time. The gain of

utilizing each channel in the licensed band gt
l can take any value from {1, 6, 11}, and the transition

probability of the gain from any qj to qi is pj→1
gl

= pj→2
gl

= 0.4, pj→3
gl

= 0.2, for j = 1, 2, 3, as

well as for j = 0 when the primary user becomes inactive. The transition probabilities about the

primary user’s access are given by p1→1
l = 0.5 and p0→1

l = 0.5. The length of a time slot is 2 ms.

We first study the strategy of the secondary users and the attackers at those states when the primary

user is inactive and no channels are observed to be successfully jammed in the previous stage. Recall

that the state of the stochastic anti-jamming game with L = 1 is denoted by st = {P t
1, g

t
1, J

t
1,C , J t

1,D},

where J t
1,C and J t

1,D represent the number of jammed control and data channels observed from the

previous stage, then three such states are (0, 1, 0, 0), (0, 6, 0, 0), and (0, 11, 0, 0). We show the

learning curve of the secondary users’ strategy in these states on the left column of Figure 2, and

the learning curve of the attackers’ strategy on the right column. We see from Figure 2 that using

the minimax-Q learning, the strategies of the secondary users and the attackers both converge within

less than 400 time slots (0.8 s), and the optimal strategy for each player is a pure strategy. Recall

that the action of the secondary users on the l-th band is denoted by (at
l,C1

, at
l,D1

, at
l,C2

, at
l,D2

), and

the action of the attackers is (at
l,J1

, at
l,J2

). Then, in Figures 2(a) and 2(b) for state (0, 1, 0, 0), we see

that the optimal strategy of the secondary users finally converges to (2, 6, 0, 0), meaning that the

secondary users uniformly choose 2 channels as control channels, and 6 channels as data channels;

and the attackers’ optimal strategy converges to (3, 0), meaning uniformly choose 3 channels to

jam. This is because the gain of each channel in this state is only 1, and the secondary users choose

to reserve a lot channels for transmitting data messages and a few channels for control messages,

in hope of obtaining a higher gain while at a higher risk of having all the control channels jammed.

When the gain increases to 6 per channel, as shown in Figures 2(c) and 2(d), the secondary users

become more risk-averse by reserving 5 control channels and 3 data channels, and the attackers
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become more aggressive by attacking the maximal number of channels they can. This is because the

gain of each channel is higher, and the secondary users want to ensure a certain gain by securing

at lease one control channel from being jammed. When the gain further increases to 11 (Figures

2(e) and 2(f)), the secondary users become even more conservative by only having 2 data channels

and 3 control channels. This is because the objective of the secondary users is defined as the

spectrum-efficient gain as in (12), and leaving more channels as idle may probably increase the

payoff.

Next, we observe how the players’ strategy will change when some of the state variables are

different, for instance, some control or data channels are jammed by the attackers in the previous

stage. We only choose two states for illustration, state (0, 6, 2, 0) and state (0, 6, 0, 2), to compare

with the strategy at state (0, 6, 0, 0).

In Figure 3, we demonstrate the learning curve of the secondary users and the attackers at state

(0, 6, 2, 0), where 2 control channels are jammed in the previous stage. We see that both players’

strategies converge within 50 time slots (0.1 s), and the optimal policies of both players at this state

are mixed strategies. Since in the previous stage, the attackers successfully jam 2 control channels,

it is highly likely that most of the remaining un-jammed channels are data channels. Thus, the

attackers tend to jam the previously un-jammed channels with a relatively high probability, as

shown by actions (1, 0), (2, 0), (3, 0), (2, 1) in Figure 3(b), the total probability of which is very

high at the beginning. Then, the secondary users tend to reserve most of the previously jammed

channels as data channels, as shown by those actions where at
l,D2

> 1 with a total probability

greater than 0.9; and reserve only a few of the previously un-jammed channels as data channels,

as shown by actions where al,D1 6 3 with a total probability greater than 0.8. Moreover, since the

attackers will attack less than 3 channels from the previously un-jammed channels, the secondary

users only reserve at most 3 control channels there to ensure reliable communications. The attackers

generally jam less than 4 channels. If they choose to jam 4 channels, the secondary users facing

the high chance of being attacked will leave more channels as idle. This may in return increase the

secondary users’ expected payoff, and thus the attackers at most jam 3 channels.

Both players’ strategies at state (0, 6, 0, 2) are shown in Figure 4. Since 2 data channels are

successfully jammed in the previous stage, the secondary users tend to reserve less than 1 channel

that are previously jammed as data channels to avoid “second jammed”, as shown by actions

(5, 0, 1, 1) and (5, 1, 1, 0) with a total probability greater than 0.7. Considering that the attackers
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will probably attack the previously un-jammed channels, the secondary users reserve most un-

jammed channels as control channels to ensure reliability, again as shown by actions (5, 0, 1, 1)

and (5, 1, 1, 0) where 5 un-jammed channels are selected as control channels. In response to the

secondary users’ strategy, the attackers will keep attacking the previously jammed channels, as

shown by actions (0, 2), (1, 2), (2, 2) with a total probability greater than 0.94, where al,J2 = 2.

Compare Figure 4 and Figure 3, we find that when the attackers successfully jam some data

channels, more information about the secondary users’ strategy (on locating the data channels) is

revealed, the damage of the jamming attack will be more severe, and the secondary users have to

reserve more channels for control use, which leads to a reduced payoff.

2) Anti-Jamming Defense in Two Licensed Bands: We now discuss the strategy of the secondary

users and attackers when there are two licensed bands available, i.e. L = 2. There are four channels

within each band, and the gain of the channels in each band still takes value from {1, 6, 11}, with

the same transition probability as that in the one-band case. The transition probability about the

primary user’s access on the first band is p1→1
1 = p0→1

1 = 0.5, while the transition probability about

the second band is p1→1
2 = p0→1

2 = 0.2, meaning that the the probability of the second band being

available is higher than that of the first band. The attackers can jam at most four channels at each

time.

To compare with the one-band case, we first study the strategy of both players at state ((0, 6, 0, 0),

(0, 6, 0, 0)), where both bands are available, with gain gt
1 = gt

2 = 6, and no control or data channels

have been jammed in the previous stage. We show the learning curve of both players in Figure 5,

where the number below each plot denotes the index of the action shown in that plot. We see that

the secondary users’ strategy converges to the optimal policy within 800 time slots (1.6 s), while the

attackers’ strategy converges within 400 time slots (0.8 s). Under the optimal policy, the secondary

users mostly take action ((1, 3, 0, 0), (1, 3, 0, 0)) indexed as 104, action ((0, 2, 0, 0), (2, 2, 0, 0))

indexed as 27, action ((2, 0, 0, 0), (1, 3, 0, 0)) indexed as 119, and action ((2, 2, 0, 0), (1, 1, 0, 0))

indexed as 147; the attackers mostly take action ((0, 0), (3, 0)) indexed as 3, action ((0, 0), (4, 0))

indexed as 4, and action ((4, 0), (0, 0)) indexed as 14. Since the availability of the second band is

higher, the attackers tend to jam the channels in the second band (with a total probability 0.7 of

action 3 and 4). But there is still a chance that they will attack the first band, indicating that the

attackers’ strategy is random. Compared to the equivalent state (0, 6, 0, 0) in the one-band case,

where the secondary users’ policy is (5, 3, 0, 0), the secondary users’ policy in the two-band case
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is more aggressive, as seen from the fact that the secondary users assign more data channels and

less control channels in total. This is because there are two available bands, the attackers’ strategy

becomes more random, and thus an aggressive policy can bring a higher gain to the secondary

users.

Then, we study the strategy at state ((0, 1, 0, 0),(0, 6, 0, 0)), where gt
1 = 1, and gt

2 = 6. The

learning curves are shown in Figure 6. Since the second band has higher gain and is also more

likely to be available in the next slot, the attackers tend to jam the second band, as seen from the

probability of action ((0, 0), (3, 0)) indexed as 3 and action ((0, 0), (4, 0)) indexed as 4. In response

to the attackers’ strategy, the secondary users tend to reserve more control channels in the first

band since it is less likely to be attacked, and more data channels in the second band since it has a

higher gain for each channel, as seen from the probability of action ((2, 1, 0, 0), (1, 1, 0, 0)) indexed

as 132 and action ((3, 0, 0, 0), (0, 4, 0, 0)) indexed as 160.

B. Comparison of Different Strategies

We also compare the performance of the secondary users when they adopt the optimal policy

obtained from the minimax-Q learning with other policies to evaluate the proposed stochastic anti-

jamming game and the learning algorithm. We assume the attackers use their optimal stationary

policy that is trained against the secondary users who adopt the minimax-Q learning. We then

consider the following three scenarios with different strategies for the secondary users.

• The secondary users adopt the stationary policy obtained by the minimax-Q learning (denoted

by “optimal”).

• The secondary users adopt a stationary policy obtained by myopic learning. By myopic, we

mean that they care more about the immediate payoff than the future payoffs. In the considered

myopic policy, we assume that the secondary users ignore the effect of their current action on

the future payoffs, so it is the extreme case where γ = 0 (denoted by “myopic”).

• The secondary users adopt a fixed strategy which draws an action uniformly from the action

space A(st) for each st (denoted by “fixed”).

In Figure 7, we compare the accumulated average payoff at each iteration t′, calculated by

r̄(t′) =
1

t′

t′∑
t=1

r(s(t), a(t), aJ(t)). (23)
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We see that, since the “optimal” strategy and the “myopic” strategy maximize the worst-case

performance, while the “fixed” strategy only uniformly picks any action regardless of the attackers’

strategy, the former two strategies have a higher average payoff than the “fixed” strategy. Moreover,

as shown in Figure 8, since the “optimal” strategy also considers the future payoff when optimizing

the strategy at the current stage, the “optimal strategy” achieves the highest sum of discounted payoff

(15% more than that of the “myopic” strategy and 42% more than that of the “fixed” strategy).

Therefore, when the secondary users face a group of intelligent attackers that can adapt their strategy

to the environment dynamics and the opponent’s strategy, adopting the minimax-Q learning in the

stochastic anti-jamming game modeling achieves the best performance.

VI. CONCLUSION

In this paper, we have studied the design of anti-jamming defense mechanism in a cognitive

radio network. Considering the spectrum environment is time-varying, and the cognitive attackers

are able to use an adaptive strategy, we model the interactions between the secondary users and the

attackers as a stochastic zero-sum game. The secondary users adapt their strategy on how to reserve

and switch between control and data channels, according to their observation about the spectrum

availability, channel quality and the attackers’ actions. Simulation results show that the optimal

policy obtained from the minimax-Q learning in the stochastic game can achieve much better

performance in terms of spectrum-efficient throughput, compared to the myopic learning policy

which only maximizes the payoff at each stage without considering the environment dynamics and

the attackers’ cognitive capability, and a random defense policy. The proposed stochastic game

framework can be generalized to model various defense mechanisms in other layers of a cognitive

radio network, since it can well model the different dynamics due to the environment as well as

the cognitive attackers.
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